LECTURE 11

Date of Lecture: February 9, 2017
Some of the proofs here are elaborations and cleaner expositions of what was given in class. Others are a quick summary.

We ended Lecture 10 with the statement that Ω is simply connected (in the sense of function theory) if and only if $\eta(\gamma, a)=0$ for every closed path γ in Ω and every $a \notin \Omega$. We deferred the proof to this lecture. In fact we prove a seemingly more general statement in Theorem 2.1.2 below.

1. Chains and cycles

1.1. Chains. Let Ω be a region. A chain in Ω is an element of the free abelian group $C(\Omega)$ generated by paths in Ω.

$$
C(\Omega)=\bigoplus_{\gamma} \mathbb{Z} \cdot \gamma
$$

For $\Gamma=\sum_{i} n_{i} \gamma_{i}$ in $C(\Omega)$, define

$$
\Gamma^{*}=\cup_{i} \gamma_{i}^{*}
$$

It is clear that given a chain $\Gamma=\sum_{i} n_{i} \gamma_{i}$, the integral

$$
\int_{\Gamma} f(z) d z=\sum_{i} n_{i} \int_{\gamma_{i}} f(z) d z
$$

makes sense for continuous functions f on Γ^{*}. We call Γ^{*} the support of Γ.
We are interested in an equivalence relation between chains so that equivalent chains have the same integral for all continuous functions in the union of their supports. Let $\mathfrak{R}=\mathfrak{R}(\Omega)$ be the subgroup of $C(\Omega)$ generated by the following relations (see [A, §4.1, pp.137-138]):
(1) If $\gamma:[a, b] \rightarrow \Omega$ is a path, and $a=t_{0}<t_{1}<\cdots<t_{n}=b$ is a partition of $[a, b]$, and γ_{i} the restriction of γ to $\left[t_{i-1}, t_{i}\right]$ for $i=1, \ldots, n$, then

$$
\gamma-\sum_{i=1}^{n} \gamma_{i} \in \mathfrak{R}(\Omega)
$$

(2) If $\gamma_{i}, i=1, \ldots, n$ are paths such that the end point b_{i} of γ_{i} coincides with the initial point a_{i+1} of γ_{i+1} for $i=1, \ldots, n-1$, and $\gamma_{1} * \cdots * \gamma_{n}$ is their fusion, then

$$
\gamma_{1} * \cdots * \gamma_{n}-\sum_{i+1}^{n} \gamma_{i} \in \mathfrak{R}(\Omega)
$$

(3) If $\varphi:[\alpha, \beta] \rightarrow[a, b]$ is a C^{1} one-to-one map, with $\varphi(s) \neq 0$ for any $s \in[\alpha, \beta]$, and $\gamma:[a, b] \rightarrow \Omega$ is a path, then

$$
\gamma-\gamma \circ \varphi \in \mathfrak{R}(\Omega) .
$$

In other words, a path and a re-parameterisation of the path differ by an element in $\mathfrak{R}(\Omega)$.
(4) If $\gamma:[a, b] \rightarrow \Omega$ is a path, and $\sigma:[-b,-a] \rightarrow \Omega$ is the opposite path, namely $\sigma(t)=\gamma(-t)$ for $t \in[-b,-a]$, then

$$
\gamma+\sigma \in \mathfrak{R}(\Omega) .
$$

We point out that

$$
\int_{\Gamma} f(z) d z=0
$$

for every $\Gamma \in \mathfrak{R}(\Omega)$ and every continuous function f on Γ^{*}, whence

$$
\begin{equation*}
\int_{\Gamma_{1}} f(z) d z=\int_{\Gamma_{2}} f(z) d z \tag{1.1.1}
\end{equation*}
$$

for chains Γ_{1} and Γ_{2} such that $\Gamma_{1}-\Gamma_{2} \in \mathfrak{R}(\Omega)$ and functions f which are continuous on $\Gamma_{1}^{*} \cup \Gamma_{2}^{*}$.
1.2. Cycles. A chain $\Gamma=\sum_{i} n_{i} \gamma_{i}$ in Ω is said the be effective if all the n_{i} are non-negative. If Γ is an effective non-zero chain, it can written uniquely as the sum of paths (with repetitions allowed to take care of multiplicites)

$$
\begin{equation*}
\Gamma=\gamma_{1}+\cdots+\gamma_{n} . \tag{*}
\end{equation*}
$$

If $\left[a, b_{i}\right]$ is the domain of γ_{i} in the representation $(*)$ of a non-zero effective chain Γ, then we can form a sequence of initial points $I(\Gamma)=\left(\gamma_{i}\left(a_{i}\right), \gamma_{2}\left(a_{2}\right), \ldots, \gamma_{n}\left(a_{n}\right)\right)$ and a sequence of final points $F(\Gamma)=\left(\gamma_{i}\left(b_{i}\right), \gamma_{2}\left(b_{2}\right), \ldots, \gamma_{n}\left(b_{n}\right)\right)$. An effective chain Γ in Ω is said to be a cycle in Ω if it is either zero or if $I(\Gamma)$ and $F(\Gamma)$ are the same up to permutation. It is easy to see that an effective chain in Ω is a cycle in Ω if and only if it is $\mathfrak{R}(\Omega)$-equivalent to a sum of closed paths in Ω.

If Γ is a chain and every path with a negative coefficient is replaced by its opposite path, then we obtain an effective chain $\widetilde{\Gamma}$. Note that $\Gamma-\widetilde{\Gamma} \in \mathfrak{R}(\Omega)$.
Definition 1.2.1. A chain Γ in Ω is a cycle in Ω if the effective chain $\widetilde{\Gamma}$ is a cycle.
Clearly every element of $\mathfrak{R}(\Omega)$ is a cycle in Ω.
From earlier comments, it is clear that Γ is a cycle in Ω if and only if it is $\mathfrak{R}(\Omega)$-equivalent to an integral linear combination of closed paths in Ω.

Let $Z(\Omega) \subset C(\Omega)$ denote the subset of cycles. It is clear that $Z(\Omega)$ is a subgroup containing $\mathfrak{R}(\Omega)$. We thus have a chain of subgroups

$$
\mathfrak{R}(\Omega) \subset Z(\Omega) \subset C(\Omega) .
$$

1.3. The winding number of a cycle class. We define the winding number of a cycle Γ around a point $a \notin \Gamma^{*}$ by the formula:

$$
\eta(\Gamma, a):=\frac{1}{2 \pi i} \int_{\Gamma} \frac{d z}{z-a} .
$$

Clearly $\eta(\Gamma, a) \in \mathbb{Z}$. In greater generality, if $\bar{\Gamma}$ is a cycle class modulo $\mathfrak{R}(\mathbf{C})$ and $a \in \mathbf{C}$ a point such that for some representative Γ of $\bar{\Gamma}$ we have $a \notin \Gamma^{*}$, then the integer $\eta(\Gamma, a)$ does not depend on the chosen representative with that property, and we have a well-defined winding number

$$
\eta(\bar{\Gamma}, a) \in \mathbb{Z}
$$

for such $a \in \mathbf{C}$. These observations are easy to verify.
The following is trivial following easily from the analogous statement for closed paths.

Proposition 1.3.1. Let Γ be a cycle. Then

$$
\eta(\Gamma, a)=0
$$

for all points a lying in the unbounded component of $\mathbf{C} \backslash \Gamma^{*}$.

2. Simply connected regions

2.1. The definition used by function theorists is the one in Definition 2.1.1 below. We denote the Riemann sphere by $\widehat{\mathbf{C}}$.

Definition 2.1.1. A region Ω in \mathbf{C} is simply connected if $\widehat{\mathbf{C}} \backslash \Omega$ is connected.
Recall that in Lecture 10 ended with a statement which is clearly equivalent to:
Theorem 2.1.2. A region Ω is simply connected if and only if $\eta(\Gamma, a)=0$ for all cycles Γ in Ω and all points $a \in \mathbf{C} \backslash \Omega$.

Proof. Proposition 1.3.1 gives the necessity of the condition.
For the sufficiency of the condition, let $\mathbf{C} \backslash \Omega=A \cup B$, with B the unbounded connected component of $\mathbf{C} \backslash \Omega$, and $A \cap B=\emptyset$. Suppose Ω is not simply connected then neither A nor B is empty. The set A is therefore non-empty and compact. Let $\delta>0$ be the shortest distance between A and B. Pick a point $a \in A$. Cover the whole plane with a net of closed squares ${ }^{1}$ of side $\delta / \sqrt{2}$ such that a is in the centre of some square in out net. (See picture below, taken from [A, Fig. 4-9, p.140].) The boundary curve of a square Q in the net is denoted ∂Q. The orientation of the boundary ∂Q is chosen in the usual way, namely that the interior of Q falls to the

[^0]left of the directed edges of Q. Let Q_{a} be the square containing a at its centre. And let S be the set of squares $S=\{Q \mid Q \cap A \neq \emptyset\}$. Since A is compact S is finite. Consider the cycle
$$
\Gamma_{1}=\sum_{Q \in S} \partial Q
$$

We note that

$$
\eta(\partial Q, a)= \begin{cases}1 & \text { if } Q=Q_{a} \\ 0 & \text { if } Q \in S \text { and } Q \neq Q_{a}\end{cases}
$$

It follows that
(**)

$$
\eta\left(\Gamma_{1}, a\right)=1
$$

Since the distance between A and B is δ and each of the squares in S has side $<\delta / \sqrt{2}$, it is clear that if $Q \in S$ then $Q \cap B=\emptyset$. Thus $\Gamma_{1}^{*} \cap B=\emptyset$. Let $Q \in S$. We regard ∂Q as the sum of four oriented edges, namely the edges of Q, with the understanding that the orientation of an edge σ in ∂Q is the one such that Q falls to its left when we traverse it. Let $\Phi_{1}=\{\sigma \mid \sigma$ is an oriented edge of some $Q \in S\}$. Note that

$$
\Gamma_{1}=\sum_{E \in \Phi_{1}} E
$$

Now if E is an oriented edge of a member of S, and $E^{*} \cap A \neq \emptyset$, then E^{*} must be the common unoriented edge of two adjacent squares Q and R, and hence the orientation on E^{*} from Q is opposite to the orientation on E^{*} from R. The two orientations work to 'cancel' the edge E from the sum representing Γ_{1}. More precisely if Ψ is the set of oriented edges E in Φ_{1} such that $E^{*} \cap A \neq \emptyset$ then $\sum_{E \in \Psi} E \in \mathfrak{R}(\mathbf{C})$. Thus if $\Phi=\Phi_{1} \backslash \Psi$, then the cycle

$$
\Gamma=\sum_{E \in \Phi} E
$$

is such that $\Gamma-\Gamma_{1} \in \mathfrak{R}(\mathbf{C})$. Since $E^{*} \cap B=\emptyset$ and $E^{*} \cap A=\emptyset$ for $E \in \Phi$, it follows that Γ is a cycle in Ω. Moroever, since $\Gamma-\Gamma_{1} \in \mathfrak{R}(\mathbf{C})$, it follows that $\eta(\Gamma, a)=\eta\left(\Gamma_{1}, a\right)$. Thus from $(* *)$ we get $\eta(\Gamma, a)=1$. We have therefore shown that if Ω is not simply connected then there is a point $a \in \mathbf{C} \backslash \Omega$ and a cycle Γ in Ω such that $\eta(\Gamma, a) \neq 0$.

Remarks 2.1.3.1) In fact, the latter part of the above argument also shows that if Ω is classically simply connected then it is simply connected in our sense, i.e., in the sense of Definition 2.1.1. In fact the universal-coefficients theorem tells us that

$$
\mathrm{H}^{1}(M, \mathbf{R}) \xrightarrow{\sim} \operatorname{Hom}\left(\pi_{1}(M, p), \mathbf{R}\right)
$$

for any connected manifold M with base point p. This means that if M has a trivial fundamental group then $\mathrm{H}^{1}(M, \mathbf{R})=0$. In particular, if a region Ω in \mathbf{C} is classically simply connected, then $\mathrm{H}^{1}(\Omega, \mathbf{R})=0$. Then every closed 1-form ω (always taken to be C^{1}) is exact, whence $\int_{\Gamma} \omega=0$ for every cycle Γ in Ω. In particular, taking $\omega=\frac{1}{2 \pi i}(z-a)^{-1} d z$ this gives $\eta(\Gamma, a)=0$ for every $a \notin \Omega$ and every cycle Γ in Ω. By Theorem 2.1.2, we see that Ω is simply connected in our sense also.
2) What we saw in the above remark is that if Ω is a region in \mathbf{C} and $\mathrm{H}^{1}(\Omega, \mathbf{R})=$ 0 then Ω is simply connected. In fact for regions in \mathbf{C}, simply connected regions Ω are exactly the regions for which $\mathrm{H}^{1}(\Omega, R)=0$ or for that matter regions such
that $\mathrm{H}^{1}(\Omega, \mathbf{C})=0$. This involves a topic not often taught in Algebraic Topology courses. A consequence of Alexander Duality is that for an open set U of \mathbf{R}^{n} wiith $Z=\mathbf{R}^{n} \backslash U$, and for any field k, the dimension of the cohomology group $\mathrm{H}^{n-1}(U, k)$ as a k-vector space is the number of compact connected components of Z [I, 6.8, p.283]. Specialise to $n=2$. Now it is obvious that Ω is simply connected in \mathbf{C} (in the sense of Definition 2.1.1) if and only if $\mathbf{C} \backslash \Omega$ has no compact connected components. Thus by the stated result from $[\mathrm{I}]$ we have Ω is simply connected if and only if $\mathrm{H}^{1}(\Omega, \mathbf{R})=0$. Exactly the same proof shows that a region Ω in \mathbf{C} is simply connected if and only if $\mathrm{H}^{1}(\Omega, \mathbf{C})=0$.
3) For regions in \mathbf{C} we have just seen that:

$$
\text { Classically simply connected } \Rightarrow \text { Simply connected. }
$$

The reverse implication is also true via the Riemann Mapping Theorem which we will prove later in the course.

3. The Generalised Cauchy Theorem

The following is a generalisation of Cauchy's Theorem.
Theorem 3.1 (Generalised Cauchy's Theorem). Let Ω be a region and Γ a cycle in Ω such that $\eta(\Gamma, a)=0$ for every $a \notin \Omega$. Then

$$
\int_{\Gamma} f(z) d z=0
$$

for every holomorphic function $f(z)$ on Ω.

References

[A] L. V. Ahlfors, Complex Analysis, McGraw-Hill, New-York, 1979.
[I] B. Iversen Cohomology of Sheaves, Universitext, Springer-Verlag, Berlin, 1986.

[^0]: ${ }^{1}$ This means no two squares have a common interior, and if two squares intersect at more than a vertex then they share an edge.

