
LECTURE 10

Date of Lecture: February 8, 2017

Some of the proofs here are elaborations and cleaner expositions of what was
given in class. Some results were unfortunately not stated in class (see Proposi-
tion ?? below). Others are a quick summary.

1. Averaging Property of Harmonic Functions

We stated in Lecture 9 (formula (A2)) that a harmonic function on an open set
in Rn has the “averaging property”. Here is the proof for the case n = 2

Theorem 1.1. Suppose u is harmonic in a region Ω in C. Let D = B(a, r) be a
disc of positive radius such that its closure D in C lies in Ω. Then

u(a) =
1

2π

∫ 2π

0

u(a+ reiθ)dθ.

Proof. From Theorem 2.2.1 of Lecture 9 we know that u has a harmonic conjugate
v on D. Let f = u+ iv. Then f is analytic on D. By Cauchy’s Theorem

u(a) + iv(a) =
1

2πi

∫
C

f(z)dz

z − a

=
1

2πi

∫ 2π

0

f(a+ reiθ)

reiθ
(ireiθ)dθ

=
1

2π

∫ 2π

0

f(a+ reiθ)dθ

=
1

2π

∫ 2π

0

u(a+ reiθ)dθ + i
1

2π

∫ 2π

0

v(a+ reiθ)dθ.

Equating real and imaginary parts we are done. �

2. The fundamental theorem of algebra

We forgot to prove an important consequence of Louisville’s theorem

Theorem 2.1. Let p(z) be polynomial with complex coefficients of degree ≥ 1.
Then p(z) has a root in C.

Proof. Let deg p(z) = n, say

p(z) = a0 + a1z + . . .+ anz
n

with n ≥ 1, and an 6= 0. Then on C∗ := C r {0} we have

p(z) = zng(z)

where g : C∗ → C is the holomorphic function

g(z) :=
(a0
zn

+
a1
zn−1

+ . . .+
an−1
z

+ an

)
.

1



Since limz→∞ g(z) = an 6= 0, there exists R > 0 such that |g(z) − an| < |an|/2
whenever |z| ≥ R. This implies that∣∣∣g(z)

∣∣∣ > |an|
2

(|z| ≥ R).

This means ∣∣∣∣∣ 1

p(z)

∣∣∣∣∣ < 2

|an||z|n
≤ 2

|an|
1

Rn
(|z| ≥ R).

It follows that limz→∞ p(z)−1 = 0. If p(z) has no roots in C, then h(z) = p(z)−1 is
also entire, and since it has a finite limit at infinity, it is bounded. By Louisville’s
theorem h(z) is a constant. This means h(z) is identically zero since limz→∞ h(z) =
0. But p(0) = an 6= 0, whence h(0) = 1/an 6= 0. This is a contradiction. �

3. Simply connected regions

3.1. The definition used by function theorists is the one in Definition 3.1.1 below.

We denote the Riemann sphere by Ĉ.

Definition 3.1.1. A region Ω in C is simply connected if Ĉ r Ω is connected.

Remark 3.1.2. The function theory definition is only used for regions in the plane
C and not for arbitrary topological spaces. The definition of simple-connectedness
in topology is that Ω is simply connected if every closed path is path homotopic in
Ω to the trivial (constant) path. We will call regions classically simply connected
or simply connected in the classical sense. It turns out that the two definitions, for
regions in C, are equivalent. One way (classical simple-connectedness ⇒ simple-
connectedness) is easy, using De Rham’s theorem and the universal coefficient the-
orem. In fact using this machinery, one sees that if a region Ω is classically simply
connected, then its first De Rham cohomology group H1(Ω, R) = 0. This means
every closed 1-form1 on Ω is exact and hence if ω is a closed 1- form then its line
integral along any closed path is zero. Recall that by Cauchy-Riemann equations,
forms of the kind f(z)dz with f holomorphic on Ω are closed. In particular if
a /∈ Ω, we have η(γ, a) = 0 for every closed path in Ω, for dz/(z − a) is a holo-
morphic form on Ω. We now appeal to Theorem 3.1.3 below to conclude that Ω is
simply connected.

The converse needs the Riemann Mapping Theorem which will be proved later
in the course.

Theorem 3.1.3. A region Ω is simply connected if and only if η(γ, a) = 0 for all
closed paths γ in Ω and all points a ∈ C r Ω.

Proof. Next lecture. �
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1We only consider C1-forms in this remark
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