
HW 1

(1) Prove rigorously that the functions f(z) and f̄(z̄) are simultaneously ana-
lytic. How are the derivatives related when they are analytic?

Solution. The underlying assumption is that f is defined on an open set Ω
in the complex plane C. Let Ω = {z ∈ C | z̄ ∈ Ω} and g : Ω→ C the map
z 7→ f̄(z̄). We have to show that f is analytic if and only if g is analytic.
Note that if we apply the process we just outlined for f to the function g, we
recover the function f . Let σ : C→ C be the conjugation map. Recall σ is
continuous, respects addition, respects limits (i.e., commutes with limits),
σ2 is the identity, and σ(0) = 0. Suppose f is analytic. For z ∈ Ω we have

g(z + h)− g(z)

h
=
f̄(z + h)− f̄(z̄)

h

= σ

[
f(σ(z) + σ(h))− f(σ(z))

σ(h)

]

Taking the limit as h→ 0, and noting that σ commutes with limits we get

lim
h→0

g(z + h)− g(z)

h
= σ

[
lim
h→0

f(σ(z) + σ(h))− f(σ(z))

σ(h)

]

= σ

[
lim

σ(h)→0

f(σ(z) + σ(h))− f(σ(z))

σ(h)

]
= σ(f ′(z̄)).

Thus the derivative of g exists and is f ′(z̄). Since the roles of f and g
are symmetric, by symmetry one sees that if g is analytic on Ω then f is
analytic on Ω. �

(2) Find the radius of convergence of the following power series

∑
npzn,

∑ zn

n!
,
∑

n!zn,
∑

zn!

Solution. Note that n1/n → 1 as n → ∞. To see this apply L’Hôpital’s

rule to get limn→∞(log x)/x = limx→∞
1/x
1 = 0, and since ex is continuous,

it follows that limx→∞ x1/x = 1.
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For the first series, note that

lim
n→∞

|np| 1n = lim
n→∞

|n 1
n |p

=
∣∣∣ lim
n→∞

n
1
n

∣∣∣p
= 1.

This gives the radius of convergence of the first series as 1.
For the second, we use the fact that if lim| anan+1

| = R for a then the power

series
∑∞
n=0 anz

n has radius of convergence R. Using this one sees that the
radius of convergence in this case is ∞.

The third series, by the same trick, yields a radius of convergence equal
to 0.

For the last series, let an be the coefficient of zn in the power series∑
zn!. Then

ak =

{
0 if k 6= n! for any n

1 if k = n! for some (necessarily unique) n.

It follows that limn→∞|an|1/n = limn→∞11/n! = 1. The radius of con-
vergence is thus 1. �

(3) If
∑
anz

n has radius of convergence R, what is the radius of convergence
of
∑
anz

2n? of
∑
a2nz

n?

Solution. Let R be the radius of convergence of
∑
n anz

n.
For the first series, let bk be the coefficient of zk. Then

bk =

{
0 if k is odd

ak/2 if k is even.

Thus

lim
k→∞

|bk|1/k = lim
k→∞

|ak/2|1/k (k even)

= lim
n→∞

|an|
1
2n (setting k = 2n)

= lim
(
|an|1/n

)1/2
=

(
1

R

)1/2

.

Similar reasoning shows that the radius of convergence of
∑
n a

2
nz
n is

R2. �

(4) Let
∑
anz

n be a power series and K and k two positive numbers.
(a) Assume that for some complex number z0, |anz0|n < Knk for all n ≥ 0.

Show that the power series converges for every z such that |z| < |z0|
(b) Do part (a) under the assumption that |a0 + a1z0 + . . .+ anz

n
0 | < Knk

for all n ≥ 0.
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Solution. For part (a) suppose |z|<|z0|. Let θ = | zz0 | < 1. Then |anzn| =
|anzn0 |θn < Knkθn. The series

∑
nkθn converges for θ < 1. This proves

part (a)
For (b) note that |anzn0 | = |(a0 + · · ·+ anz

n
0 )− (a0 + · · ·+ an−1z

n−1
0 | ≤

2Knk. This reduces to part (a) �

(5) Let γ be a closed path in C and ϕ a continuous (complex-valued) function
on (the image of) γ. Show that

fn(z) :=

∫
γ

ϕ(ζ)

(ζ − z)n+1
dζ

is holomorphic on the components of C determined by γ and that

f ′n(z) = (n+ 1)

∫
γ

ϕ(ζ)

(ζ − z)n+2
dζ.

Solution. Let the domain of the closed path γ be the closed interval [a, b].
We have a complex measure µ on [a, b] with its standard sigma-algebra
(i.e., the Lebesgue sigma-algebra) given by dµ(t) = ϕ(γ(t))γ′(t)dt. More
precisely µ is the measure E 7→

∫
E

(ϕ ◦γ)γ′dm, where m is the Lebesgue
measure on [a, b], and E varies over the Lebesgue sigma-algebra. The re-
sults then follow trivially from Theorem 1.1 of Lecture 2, with X = [0, 1],
F the Lebesgue sigma-algebra, and µ as we just defined it. �

(6) Compute ∫
γ

xdz

where γ is the directed line segment from 0 to 1 + i.

Solution. The obvious parameterisation for γ is t 7→ t + it on [0, 1]. It
follows that ∫

γ

xdz =

∫ 1

0

t(1 + i)dt

= (1 + i)
[ t2

2

]1
t=0

=
1

2
(1 + i).

�

(7) Compute ∫
|z|=2

dz

z2 − 1

for the positive sense of the circle.

Solution. We have

1

z2 − 1
=

1

2

[
1

z − 1
− 1

z + 1

]
.
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Now, using the parameterisation t 7→ 2eit, 0 ≤ t ≤ 2π, we see that∫
|z|=2

dz

z − 1
=

∫ 2π

0

2ieitdt

2eit − 1

= i

∫ 2π

0

2eit − 1

2eit − 1
+ i

∫ 2π

0

dt

2eit − 1

= 2πi+ i

∫ 2π

0

dt

2eit − 1
.

Similarly ∫
|z|=2

dz

z + 1
= 2πi− i

∫ 2π

0

dt

2eit + 1
.

So ∫
|z|=2

dz

z2 − 1
= i

{∫ 2π

0

dt

2eit − 1
+

dt

2eit + 1

}
.

Now
1

2eit − 1
=

2 cos t− 1

5− 4 cos t
− 2i sin t

5− 4 cos t
One checks that the integral of sin t/(5− 4 cos t) over [0, 2π] with respect to
dt is zero, by noting that an antiderivative of the integrand is 1

4 ln |5−4 cos t|.
Thus ∫ 2π

0

dt

2eit − 1
=

∫ 2π

0

2 cos t− 1

5− 4 cos t
dt

=

(∫ π

0

+

∫ 2π

π

)[
2 cos t− 1

5− 4 cos t

]
dt

An easy symmetry argument shows that the two integrals in the last line
are equal, whence∫ 2π

0

dt

2eit − 1
= 2

∫ π

0

2 cos t− 1

5− 4 cos t
dt.

Similarly ∫ 2π

0

dt

2eit + 1
= 2

∫ π

0

2 cos t+ 1

5 + 4 cos t
dt.

Adding, we get∫ 2π

0

dt

2eit − 1
+

dt

2eit + 1
= 2

∫ π

0

12 cos t

9 + 16 sin2 t
dt.

Using the decomposition
∫ π
0

=
∫ π/2
0

+
∫ π
π/2

and applying the identity cos t =

− cos (π − t) we get (via the substitution u = π − t)∫ π

0

12 cos t

9 + 16 sin2 t
dt = 0.

It follows that ∫
|z|=2

dz

z2 − 1
= 0.

�
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(8) Suppose that f(z) is analytic on a closed curve γ (i.e., f is analytic in a
region that contains γ). Show that∫

γ

f(z)f ′(z)dz

is purely imaginary. (The continuity of f ′(z) is taken for granted.)

Solution. Let f = u+ iv. Then ff̄ = |f |2 = u2 + v2. Let x and y be the
co-ordinates along the real and imaginary axes respectively. Then using
the Cauchy-Riemann equations for the third equality below, we get

f(z)f ′(z)dz = (u− iv)(ux + ivx)(dx+ idy)

= [(uux + vvx) + i(uvx − vux)](dx+ idy)

= [(uux + vvx)− i(uuy + vvy)](dx+ idy)

= (uux + vvx)dx+ (uuy + vvy)dy

+ i[(uux + vvx)dy − (uuy + vvy)dx]

=
1

2
d(u2 + v2) + iω

where ω = (uux + vvx)dy − (uuy + vvy)dx. Since d(u2 + v2) is an exact
differential and γ is a closed path, we have

∫
γ
d(u2 + v2) = 0. Thus∫

γ

f(z)f ′(z)dz = i

∫
γ

ω.

Since ω is a real form, the number on the right side is purely imaginary. �
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