HW 8

Due on March 15, 2017 (in class).

Laurent Expansions.

(1) Let $0<|a|<|b|$, and consider

$$
f(z)=\frac{1}{(z-a)(z-b)}
$$

(a) Expand $f(z)$ as a Laurent series in $0<|a|<|z|<|b|$.
(b) Expand $f(z)$ as Laurent series for $|z|>|b|$.
(2) Let $\sum_{-\infty}^{\infty} a_{n} z^{n}$ and $\sum_{-\infty}^{\infty} b_{n} z^{n}$ be two Laurent expansions which converge in the same annulus $A(r, s)$ (centered at 0$) 0<r<s$. What is the Laurent expansion of the product of the functions represented by them?
(3) What is the Laurent expansion of the function

$$
f(z)=e^{c\left(c+\frac{1}{z}\right)}
$$

which is regular on $\mathbf{C}^{*}=\mathbf{C} \backslash\{0\}$?

Residues.

(4) Determine the residues of
(a) $\frac{1}{\sin z}$ at $z=k \pi, k \in \mathbb{Z}$,
(b) $\frac{z}{(z-1)(z-2)^{2}}$ at $z=1$ and $z=2$,
(c) $\tan z$ at $z=\frac{\pi}{2}+k \pi, k \in \mathbb{Z}$.
(5) Let $R(x)=\frac{a_{0}+a_{1} x+\cdots+a_{m} x^{m}}{b_{0}+b_{1} x+\cdots+b_{k} x^{k}}$ be a rational function with real coefficients, whose denominator vanishes for no real value of x, the degree of the denominator exceeding that of the numerator by at least two ($a_{m} \neq 0$, $\left.b_{k} \neq 0, k \geq m+2\right)$. Show that the real integral

$$
\int_{-\infty}^{\infty} R(x) d x
$$

converges and is equal to $2 \pi i$ times the sum S of the residues of $R(z)$ at its poles in the upper half-plane.

