Due on March 8, 2017 (in class).

Rational functions.

(1) Suppose that $R(z)=P(z) / Q(z)$ is a rational function, where we assume that $P(z)$ and $Q(z)$ are polynomials with no common factors. Let λ be equal to the larger of the degrees of P and Q. We view $R(z)$ as a mapping of the extended complex plane to itself (i.e., from the Riemann sphere to itself). In this setting, show that the total number of zeros of R is equal to λ. Show that the number of poles is also λ. Show that, for all but a finitely many values of a, there are exactly λ distinct solutions to $R(z)=a$.
(2) Suppose P and Q are polynomials of the same degree with no common factors. Let K denote the compact set consisting of the closed line segments which join the zeros of P and Q to the origin. Prove that there exists a branch of $\log \frac{P(z)}{Q(z)}$ defined on $\mathbf{C} \backslash K$.

Rouché's Theorem.

(3) Use Rouché's Theorem to prove that if f is analytic on $\{z||z| \leq 1\}$, and if $\left|f\left(e^{i \theta}\right)\right|<1$ for $0 \leq \theta \leq 2 \pi$, then f has exactly one fixed point in the disc $B(0,1)$.
(4) Use Rouché's Theorem to prove that there are no polynomials of the form

$$
p(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}
$$

satisfying $|p(z)|<1$ for all z with $|z|=1$.

Implicit function theorem. For a function of two variables (z, w), we prefer to use the symbols ∂_{1} and ∂_{2} for the partial derivatives $\frac{\partial}{\partial z}$ and $\frac{\partial}{\partial w}$.

Let $p(z, w)$ be analytic in both variables (i.e., for fixed w it is analytic in z and vice-versa) on $U \times V \subset \mathbf{C}^{2}$, where U and V are regions in \mathbf{C}. Let $\left(z_{0}, w_{0}\right) \in U \times V$ be a point such that $p\left(z_{0}, w_{0}\right)=0$ and $\partial_{2}\left(p\left(z_{0}, w_{0}\right)\right) \neq 0$. For fixed $z \in U$, let $f_{z}: V \rightarrow \mathbf{C}$ be the holomorphic function $f_{z}(w)=p(z, w)$.

In the following you may find problem 2 of HW 5 and problem 6 of HW 6 useful.
(5) Show that there is a circle C centred at w_{0}, with the closed disc enclosed by C contained in V, and an open neighbourhood Ω of $z_{0}, \Omega \subset U$, such that for each fixed $z \in \Omega, \eta\left(f_{z}(C), z\right)=1$.
(6) Let D be the open disc enclosed by the circle C of the previous problem. Let Ω also be as in the previous problem. Show that there is a holomorphic function $g: \Omega \rightarrow D$ such that $g\left(z_{0}\right)=w_{0}$, and $p(z, g(z))=0, z \in D$. Moreover show that for each $z \in D, w=g(z)$ is the only solution of $p(z, w)=0$ in D.

Simply connected regions. As usual, we follow the function theoretic definition of simple connectedness.
(7) Show using only Theorem 2.1.2 of Lecture 11, and Problem 10 of HW 6, that a classically simply connected region is simply connected. [Hint: The last sentence of Problem10 (c) of HW 6 may be useful.]
(8) Show that a harmonic function on a simply connected region has a conjugate.

Harmonic functions.

(9) Suppose u is continuous on $\{z||z| \leq 1\}$ and that

$$
u(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(z+(1-|z|) e^{i \theta}\right) d \theta \quad \text { for all } z \in B(0,1)
$$

Prove that u is harmonic in $B(1,0)$.
(10) Let u be harmonic on a region Ω. Show that the points where the gradient of u is zero must be isolated unless u is constant.

