HW 6

Due on March 1, 2017 (in class).

Harmonic Functions.

- (1) Suppose u is harmonic in a region Ω which contains 0, and the disc $|z| \leq R$ is contained in Ω .
 - (a) Show that (with $z = Re^{i\theta}$)

$$u(a) = \frac{1}{2\pi} \int_{|z|=R} \frac{R^2 - |a|^2}{|z-a|^2} u(z) d\theta$$

for all |a| < R. [Hint: For a such that |a| < R, consider the map T given by $z \mapsto R(Rz + a)/(R + \bar{a}z)$. Show that T maps the unit disc bijectively on to the disc $\{|z| \le R\}$ and sends 0 to a. Apply the averaging property for a suitable transformation of u.]

- (b) We assumed in part (a) that u was harmonic on the closed disc D = |z| ≤ R. Show that the assumption can be relaxed in the following way. Suppose u is continuous on D and harmonic in the interior D of D. Show that the formula in part (a) continues to hold. [Hint: For 0 < r < 1, consider the function z → u(rz). Take appropriate limits. Show that the limit passes through an integral sign.]</p>
- (2) Show that the uniform limit of harmonic functions is harmonic.
- (3) Let u be harmonic in a region Ω .
 - (a) If u attains a maximum or a minimum in Ω , show that u must be a constant.
 - (b) Show that if u_1 and u_2 are harmonic in a region containing a closed disc \overline{D} of positive radius, and if u_1 and u_2 agree on the bounding circle of \overline{D} , then $u_1 = u_2$ on \overline{D} .

Generalised Cauchy's formula. In complex analysis, the following definition is used for cycles homologous to zero in a region. Let Ω be a region. A cycle Γ in Ω is said to be homologous to zero in Ω if $\eta(\Gamma, a) = 0$ for every $a \notin \Omega$.

If Γ is homologous to zero in Ω , we often write $\Gamma \sim 0 \pmod{\Omega}$. If Γ and Γ' two cycles in Ω and $\Gamma - \Gamma' \sim 0 \pmod{\Omega}$, we often write $\Gamma \sim \Gamma' \pmod{\Omega}$ and say Γ is homologous to Γ' with respect to Ω . Note that if $\Gamma \sim 0 \pmod{\Omega}$ then $\Gamma \sim 0 \pmod{\Omega'}$ for every $\Omega' \supset \Omega$.

Assume the Generalised Cauchy-Goursat Theorem, namely that $\int_{\Gamma} f(z)dz = 0$ for holomorphic functions f(z) on a region Ω and cycles $\Gamma \sim 0 \pmod{\Omega}$.

- (4) Let Ω be a simply connected¹ region. Let f(z) be analytic in Ω .
 - (a) Show that $\int_{\Gamma} f(z) dz = 0$ for every cycle Γ in Ω .
 - (b) If f(z) is nowhere vanishing on Ω, show using the Generalised Cauchy-Goursat theorem that it is possible to define a single-valued analytic branch of log f(z) in Ω, i.e., it is possible to find an analytic function g(z) on Ω such that e^{g(z)} = f(z).
 - (c) Let f(z) be as in part (b). Show that it is possible to define a single-valued branch of $\sqrt[n]{f(z)}$.
 - (d) Suppose f has a zero of multiplicity m at z_{\circ} . Show that there there is a small disc $D = B(z_{\circ}, \epsilon)$ on which an analytic function g(z) can be defined such that $g(z)^m = f(z)$.

The Argument Principle.

(5) If f(z) is meromorphic in a region Ω with zeros a_i and poles b_k , show that

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{f'(z)}{f(z)} dz = \sum_{i} \eta(\Gamma, a_i) - \sum_{k} \eta(\Gamma, b_k)$$

for every cycle $\Gamma \sim 0 \pmod{\Omega}$ with the property that Γ^* does not contain any of the zeros or poles. (The multiple zeros and poles have to be repeated as many times as their order indicates; and the sum is finite.)

- (6) Let D = B(a, r) where r > 0 and let \overline{D} be its closure. Suppose f(z) is a holomorphic function on \overline{D} such that f(a) = 0 and a is the only solution of f(z) = 0 in \overline{D} . Suppose further that $f'(a) \neq 0$. Let $C = \partial \overline{D}$ with the usual orientation.
 - (a) Show that

$$\frac{1}{2\pi i} \int_C \frac{zf'(z)}{f(z)} dz = a.$$

(b) Show, without using the inverse function theorem, that there is a nonempty open subset W of f(D) containing 0 such that for $w \in W$, if g(w) be given by

$$g(w) = \frac{1}{2\pi i} \int_C \frac{zf'(z)}{f(z) - w} dz$$

then g(f(z)) = z for $z \in g(W)$ and f(g(w)) = w for $w \in W$.

- (c) Show using the integral formula for g(w) in part (b) that g is holomorphic. [Hint: You have to argue that you can differentiate under the integral sign.]
- (7) Let $\pi/4 < r < \pi/2$. Let D be an open disc of radius r centred at 0 and C be the circle of radius r centred at 0.

¹In the function-theoretic sense, i.e., in the sense of the definition used in this course

- (a) Show that $\int_C \cot z dz = 2\pi i$.
- (b) Show that

$$\int_C \frac{z\cos z}{\sin z - 0.5} dz = \frac{\pi^2 i}{3}$$

(8) Suppose P(z, w) is a polynomial of degree n in z and degree m in w, i.e.,

$$P(z, w) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij} z^{i} w^{j}$$

where $a_{nj} \neq 0$ for some j and $a_{im} \neq 0$ for some i. Prove that if the polynomial in z given by $p_{\circ}(z) = P(z, w_{\circ})$ has exactly n distinct zeros, then there is an $\epsilon > 0$ such that the polynomial in z given by $p_w(z) = P(z, w)$ has the same property for each fixed w in $B(w_{\circ}, \epsilon)$.

Integrals. Here are some exercises on integrals and covering spaces.

- (9) For r > 0, let C_r will denote the semi-circle $z(t) = re^{it}, 0 \le t \le \pi$.
 - (a) Show that

$$\lim_{r \to \infty} \left| \int_{C_r} \frac{1 - e^{2iz}}{z^2} dz \right| = 0.$$

(b) Show that

$$\lim_{r \to 0} \int_{C_r} \frac{1 - e^{2iz}}{z^2} dz = 2\pi.$$

- (10) This is an exercise on covering spaces as well as integrals. Let \mathbf{C}_a^* be the complex plane punctured at $a \in \mathbf{C}$, i.e., $\mathbf{C}_a^* = \mathbf{C} \setminus \{a\}$. If a = 0, write \mathbf{C}^* for \mathbf{C}_0^* . For a path $\gamma: [\alpha, \beta] \to \mathbf{C}_a^*$, and for $\alpha \leq t \leq \beta$, let $\gamma_t = \gamma|_{[\alpha, t]}$.
 - (a) Show that $f_a: \mathbf{C} \to \mathbf{C}_a^*, z \mapsto a + e^z$ is the universal covering space of \mathbf{C}_a^* . [Hint: Without loss of generality assume a = 0 and show that for any $\theta_{\circ} \in \mathbf{R}, f_a$ maps $\{z \in \mathbf{C} \mid \theta_{\circ} < \operatorname{Im}(z) < \theta_{\circ} + 2\pi\}$ bijectively on to the $\mathbf{C}^* \smallsetminus L_{\theta_{\circ}}$ where $L_{\theta_{\circ}}$ is the ray which makes an angle of θ_{\circ} with the positive real axis.]
 - (b) Show that if $\gamma \colon [\alpha, \beta] \to \mathbf{C}_a^*$ is a path staring at $z_o \in \mathbf{C}_a^*$, then for every point w_o in the fibre $f_a^{-1}(z_o)$, the map $\widetilde{\gamma} \colon [\alpha, \beta] \to \mathbf{C}$ given by

$$t \mapsto w_{\circ} + \int_{\gamma_t} \frac{dz}{z-a} \qquad (t \in [\alpha, \beta])$$

is the unique path lift of γ for the covering map f_a starting at w_{\circ} . [Hint: See proof of Thm. 1.1 of Lecture 7.]

(c) Show that (with the notations of the part (b)) if a closed path γ in \mathbf{C}_a^* is such that

$$\eta(\gamma, a) = n,$$

and $\widetilde{\gamma}$ is a lift of γ to the universal covering space $f_a \colon \mathbf{C} \to \mathbf{C}_a^*$, then

$$\widetilde{\gamma}(\beta) = \widetilde{\gamma}(\alpha) + 2\pi i n \cdot \frac{3}{3}$$

Conclude that γ is path homotopic to the trivial path if and only if n=0.