Due on March 1, 2017 (in class).

Harmonic Functions.

(1) Suppose u is harmonic in a region Ω which contains 0 , and the disc $|z| \leq R$ is contained in Ω.
(a) Show that (with $z=R e^{i \theta}$)

$$
u(a)=\frac{1}{2 \pi} \int_{|z|=R} \frac{R^{2}-|a|^{2}}{|z-a|^{2}} u(z) d \theta
$$

for all $|a|<R$. [Hint: For a such that $|a|<R$, consider the map T given by $z \mapsto R(R z+a) /(R+\bar{a} z)$. Show that T maps the unit disc bijectively on to the disc $\{|z| \leq R\}$ and sends 0 to a. Apply the averaging property for a suitable transformation of u.]
(b) We assumed in part (a) that u was harmonic on the closed disc $\bar{D}=$ $|z| \leq R$. Show that the assumption can be relaxed in the following way. Suppose u is continuous on \bar{D} and harmonic in the interior D of \bar{D}. Show that the formula in part (a) continues to hold. [Hint: For $0<r<1$, consider the function $z \mapsto u(r z)$. Take appropriate limits. Show that the limit passes through an integral sign.]
(2) Show that the uniform limit of harmonic functions is harmonic.
(3) Let u be harmonic in a region Ω.
(a) If u attains a maximum or a minimum in Ω, show that u must be a constant.
(b) Show that if u_{1} and u_{2} are harmonic in a region containing a closed disc \bar{D} of positive radius, and if u_{1} and u_{2} agree on the bounding circle of \bar{D}, then $u_{1}=u_{2}$ on \bar{D}.

Generalised Cauchy's formula. In complex analysis, the following definition is used for cycles homologous to zero in a region. Let Ω be a region. A cycle Γ in Ω is said to be homologous to zero in Ω if $\eta(\Gamma, a)=0$ for every $a \notin \Omega$.

If Γ is homologous to zero in Ω, we often write $\Gamma \sim 0(\bmod \Omega)$. If Γ and Γ^{\prime} two cycles in Ω and $\Gamma-\Gamma^{\prime} \sim 0(\bmod \Omega)$, we often write $\Gamma \sim \Gamma^{\prime}(\bmod \Omega)$ and say Γ is homologous to Γ^{\prime} with respect to Ω. Note that if $\Gamma \sim 0(\bmod \Omega)$ then $\Gamma \sim 0(\bmod$ Ω^{\prime}) for every $\Omega^{\prime} \supset \Omega$.

Assume the Generalised Cauchy-Goursat Theorem, namely that $\int_{\Gamma} f(z) d z=0$ for holomorphic functions $f(z)$ on a region Ω and cycles $\Gamma \sim 0(\bmod \Omega)$.
(4) Let Ω be a simply connected ${ }^{1}$ region. Let $f(z)$ be analytic in Ω.
(a) Show that $\int_{\Gamma} f(z) d z=0$ for every cycle Γ in Ω.
(b) If $f(z)$ is nowhere vanishing on Ω, show using the Generalised CauchyGoursat theorem that it is possible to define a single-valued analytic branch of $\log f(z)$ in Ω, i.e., it is possible to find an analytic function $g(z)$ on Ω such that $e^{g(z)}=f(z)$.
(c) Let $f(z)$ be as in part (b). Show that it is possible to define a singlevalued branch of $\sqrt[n]{f(z)}$.
(d) Suppose f has a zero of multiplicity m at z_{0}. Show that there there is a small disc $D=B\left(z_{\circ}, \epsilon\right)$ on which an analytic function $g(z)$ can be defined such that $g(z)^{m}=f(z)$.

The Argument Principle.

(5) If $f(z)$ is meromorphic in a region Ω with zeros a_{i} and poles b_{k}, show that

$$
\frac{1}{2 \pi i} \int_{\Gamma} \frac{f^{\prime}(z)}{f(z)} d z=\sum_{i} \eta\left(\Gamma, a_{i}\right)-\sum_{k} \eta\left(\Gamma, b_{k}\right)
$$

for every cycle $\Gamma \sim 0(\bmod \Omega)$ with the property that Γ^{*} does not contain any of the zeros or poles. (The multiple zeros and poles have to be repeated as many times as their order indicates; and the sum is finite.)
(6) Let $D=B(a, r)$ where $r>0$ and let \bar{D} be its closure. Suppose $f(z)$ is a holomorphic function on \bar{D} such that $f(a)=0$ and a is the only solution of $f(z)=0$ in \bar{D}. Suppose further that $f^{\prime}(a) \neq 0$. Let $C=\partial \bar{D}$ with the usual orientation.
(a) Show that

$$
\frac{1}{2 \pi i} \int_{C} \frac{z f^{\prime}(z)}{f(z)} d z=a
$$

(b) Show, without using the inverse function theorem, that there is a nonempty open subset W of $f(D)$ containing 0 such that for $w \in W$, if $g(w)$ be given by

$$
g(w)=\frac{1}{2 \pi i} \int_{C} \frac{z f^{\prime}(z)}{f(z)-w} d z
$$

then $g(f(z))=z$ for $z \in g(W)$ and $f(g(w))=w$ for $w \in W$.
(c) Show using the integral formula for $g(w)$ in part (b) that g is holomorphic. [Hint: You have to argue that you can differentiate under the integral sign.]
(7) Let $\pi / 4<r<\pi / 2$. Let D be an open disc of radius r centred at 0 and C be the circle of radius r centred at 0 .

[^0]（a）Show that $\int_{C} \cot z d z=2 \pi i$ ．
（b）Show that
$$
\int_{C} \frac{z \cos z}{\sin z-0.5} d z=\frac{\pi^{2} i}{3} .
$$
（8）Suppose $P(z, w)$ is a polynomial of degree n in z and degree m in w ，i．e．，
$$
P(z, w)=\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i j} z^{i} w^{j}
$$
where $a_{n j} \neq 0$ for some j and $a_{i m} \neq 0$ for some i ．Prove that if the polynomial in z given by $p_{\circ}(z)=P\left(z, w_{\circ}\right)$ has exactly n distinct zeros，then there is an $\epsilon>0$ such that the polynomial in z given by $p_{w}(z)=P(z, w)$ has the same property for each fixed w in $B\left(w_{\mathrm{o}}, \epsilon\right)$ ．
Integrals．Here are some exercises on integrals and covering spaces．
（9）For $r>0$ ，let C_{r} will denote the semi－circle $z(t)=r e^{i t}, 0 \leq t \leq \pi$ ．
（a）Show that
$$
\lim _{r \rightarrow \infty}\left|\int_{C_{r}} \frac{1-e^{2 i z}}{z^{2}} d z\right|=0
$$
（b）Show that
$$
\lim _{r \rightarrow 0} \int_{C_{r}} \frac{1-e^{2 i z}}{z^{2}} d z=2 \pi .
$$
（10）This is an exercise on covering spaces as well as integrals．Let \mathbf{C}_{a}^{*} be the complex plane punctured at $a \in \mathbf{C}$ ，i．e．， $\mathbf{C}_{a}^{*}=\mathbf{C} \backslash\{a\}$ ．If $a=0$ ，write \mathbf{C}^{*} for \mathbf{C}_{0}^{*} ．For a path $\gamma:[\alpha, \beta] \rightarrow \mathbf{C}_{a}^{*}$ ，and for $\alpha \leq t \leq \beta$ ，let $\gamma_{t}=\left.\gamma\right|_{[\alpha, t]}$ ．
（a）Show that $f_{a}: \mathbf{C} \rightarrow \mathbf{C}_{a}^{*}, z \mapsto a+e^{z}$ is the universal covering space of \mathbf{C}_{a}^{*} ．［Hint：Without loss of generality assume $a=0$ and show that for any $\theta_{\circ} \in \mathbf{R}, f_{a}$ maps $\left\{z \in \mathbf{C} \mid \theta_{\circ}<\operatorname{Im}(z)<\theta_{\circ}+2 \pi\right\}$ bijectively on to the $\mathbf{C}^{*} \backslash L_{\theta}$ 。 where L_{θ} 。 is the ray which makes an angle of θ 。 with the positive real axis．］
（b）Show that if $\gamma:[\alpha, \beta] \rightarrow \mathbf{C}_{a}^{*}$ is a path staring at $z_{0} \in \mathbf{C}_{a}^{*}$ ，then for every point w_{\circ} in the fibre $f_{a}^{-1}\left(z_{\circ}\right)$ ，the map $\widetilde{\gamma}:[\alpha, \beta] \rightarrow \mathbf{C}$ given by
$$
t \mapsto w_{\circ}+\int_{\gamma_{t}} \frac{d z}{z-a} \quad(t \in[\alpha, \beta])
$$
is the unique path lift of γ for the covering map f_{a} starting at w_{0} ． ［Hint：See proof of Thm．1．1 of Lecture 7．］
（c）Show that（with the notations of the part（b））if a closed path γ in \mathbf{C}_{a}^{*} is such that
$$
\eta(\gamma, a)=n,
$$
and $\widetilde{\gamma}$ is a lift of γ to the universal covering space $f_{a}: \mathbf{C} \rightarrow \mathbf{C}_{a}^{*}$ ，then
$$
\widetilde{\gamma}(\beta)=\widetilde{\gamma}(\alpha)+2 \pi i n .
$$

Conclude that γ is path homotopic to the trivial path if and only if $n=0$.

[^0]: ${ }^{1}$ In the function-theoretic sense, i.e., in the sense of the definition used in this course

