HW 5

Due on Feb 9, 2017 (in tutorial).

Harmonic Functions.

(1) Find the most general harmonic function of the form $ax^3+bx^2y+cxy^2+dy^3$ on the plane. Determine the conjugate and the corresponding analytic function.

Derivatives of integrals.

(2) Let Ω be a region in **C** and $I = [\alpha, \beta]$ a closed interval in **R**. Let $\varphi \colon \Omega \times I \to \mathbf{C}$ be a continuous function. Suppose further that $\varphi(z, t)$ is analytic as a function of $z \in \Omega$ for any fixed $t \in I$. Show that

$$F(z) = \int_{\alpha}^{\beta} \varphi(z, t) dt$$

is analytic in z and

$$F'(z) = \int_{\alpha}^{\beta} \frac{\partial \varphi(z, t)}{\partial z} dt.$$

[Hint: Represent $\varphi(z, t)$ as a Cauchy integral, and realise F(z) as an iterated integral. Also use an earlier problem you did, which gives the formula for a derivative as an integral.]

Isolated Singularities and meromorphic functions. Suppose f is analytic on $\{z \mid |z| > R\}$. Then $f(\frac{1}{z})$ has an isolated singularity at z = 0. The type of singularity of f at ∞ is defined to be the type of the singularity of $f(\frac{1}{z})$ at z = 0.

A function $f: \Omega \to \mathbb{C} \cup \{\infty\}$ is said to be meromorphic on a region Ω if, for each point $z_0 \in \Omega$, there is a disc $B(z_0, r) \subset \Omega$ and functions G(z) and H(z) which are analytic on $B(z_0, r)$ and such that H is not identically 0 and f(z) = G(z)/H(z) on $B(z_0, r)$.

- (3) This problem involves the behaviour of entire functions at ∞ .
 - (a) Describe the set of entire functions that have a removable singularity at ∞ .
 - (b) Describe the set of entire functions that have a pole at ∞ .
- (4) This problem concerns meromorphic functions.

- (a) Prove that if f is meromorphic on Ω , then there is a sequence of points $\{a_i\}_{i=1}^{\infty}$ in Ω with no accumulation points in Ω such that $a_i \neq a_j$ if $i \neq j$, f is analytic on $\Omega \setminus \{a_i \mid i = 1, 2, ...\}$ and f has poles at the a_i 's. Prove the converse.
- (b) Define what it means for a function to be meromorphic on $\mathbf{C} \cup \{\infty\}$. Show that all such meromorphic functions are rational functions.
- (5) Prove that an isolated singularity of f(z) cannot be a pole of $e^{f(z)}$.

General Cauchy's Theorem. Assume the following general form the Cauchy's Theorem (we will prove an even more general form later in the course):

Suppose Ω is a region and γ a closed path in Ω such that $\eta(\gamma, a) = 0$ for every $a \notin \Omega$. Then

$$\int_{\gamma} f(z) dz = 0$$

for every holomorphic function on Ω .

(6) Let Ω be a region and γ a closed path in Ω satisfying the hypotheses of the general form of Cauchy's theorem given above. Suppose Ω' is an region containing γ* and such that Ω' ∩ U = Ω ∩ U for every connected component U of C \ γ* such that η(γ, a) ≠ 0 for a ∈ U. Show that

$$\int_{\gamma} f(z) dz = 0$$

for every holomorphic function f on Ω' .

(7) Let Ω be a region and γ a closed path in Ω satisfying the hypotheses of the general form of Cauchy's theorem given above. Let f(z) be analytic on Ω and let $S = \{a_i\}$ be the collection of zeroes of f in Ω . For each $a_i \in S$ let n_i be the order of the zero of f at a_i . Suppose that $S \cap \gamma^* = \emptyset$. Show that

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{i} \eta(\gamma, a_i) n_i.$$

[Remark and Hint: Note that S need not be finite. Check that only a finite number terms in the sum on the right side of the above equality are non-zero. Now imitate the proof of the Argument Principle given in class, and use the results of the previous problem to get the solution.]