HW 3

Due on Jan 25, 2017 (in class).

Power Series.

- (1) Given a power series $\sum_{n} a_n z^n$, show that the radius of convergence R is equal to
 - $\sup\{r \mid \text{there is a constant } M \text{ such that } |a_n| \leq Mr^{-n}, \forall n \geq 0\}.$

Integrals. You will not really need brute force computations for these problems, but some computations may be needed.

(2) Evaluate	
(a)	
	$\int_{\{ z =1\}} \frac{e^z}{z} dz.$
(b)	
	$\int_{\{ z =1\}} e^z z^{-n} dz.$
(c)	
	$\int_{\{ z =2\}} z^n (1-z)^m dz.$

Estimates.

- (3) Prove that a function that is analytic in the whole plane and satisfies the inequality $|f(z)| < |z|^n$ for some n, and sufficiently large |z|, is a polynomial.
- (4) If f(z) is analytic and $|f(z)| \leq M$ for $|z| \leq R$, find an upper bound for $|f^{(n)}(z)|$ in $|z| \leq \rho < R$.

Schwarz's Lemma. Throughout $\Delta = \{z : |z| < 1\}.$

(5) Suppose $f: \Delta \to \Delta$ is analytic and one-to-one. Prove that

$$f(z) = e^{i\theta} \frac{z-a}{1-\bar{a}z}$$

for some real θ , and some a, |a| < 1.

(6) Prove the following generalised version of Schwarz's lemma: If $f: \Delta \to \Delta$ is an analytic map and if f(a) = 0 for some $a \in \Delta$, then

$$|f(z)| \le \frac{|z-a|}{|1-\bar{a}z|} \qquad (z \in \Delta).$$

What can you say if equality occurs for some $z \neq a$?

(7) Show that $|f(z)| \le 1$ for $|z| \le 1$ implies that

$$\frac{|f'(z)|}{(1-|f(z)|^2)} \le \frac{1}{1-|z|^2}.$$