HW 2

 Due on Jan 18, 2017 (in class).Series. For a power series $\sum_{n} c_{n}(z-a)^{n}$ with radius of convergence r, the circle of convergence is the circle $\{z||z-a|=r\}$.
(1) If $r>0$ is the radius of convergence of the series $\sum_{n=0}^{\infty} a_{n} z^{n}$, and if at a point $z_{0},\left|z_{0}\right|=r$, the series converges absolutely, show that $\sum_{n=0}^{\infty} a_{n} z^{n}$ converges absolutely and uniformly for $|z| \leq r$
(2) At which point on the circle of convergence does the power series

$$
\sum_{n=1}^{\infty} \frac{z^{n}}{n}
$$

converge?
(3) Discuss the uniform convergence of the series

$$
\sum \frac{x}{n\left(1+n x^{2}\right)}
$$

for real values of x.
(4) If $U=u_{1}+u_{2}+\cdots+, V=v_{1}+v_{2}+\ldots$ are convergent series, prove that $U V=u_{1} v_{1}+\left(u_{1} v_{2}+u_{2} v_{1}\right)+\left(u_{1} v_{3}+u_{2} v_{2}+u_{3} v_{1}\right)+\ldots$ provided that at least one of the series is absolutely convergent. (Hint: Modify the well-known argument when both the series are absolutely convergent.)

Geometry and function theory.

(5) Let $a \neq 0$ be a complex number. Show that all circles that pass through a and $1 / \bar{a}$ intersect the circle $|z|=1$ at right angles.
(6) If $|a|<1$, show that $f(z)=\frac{z-a}{1-\bar{a} z}$ is a one-to-one map of the unit disc onto itself. Compute the inverse of f and show that $|f(z)|=1$ if $|z|=1$.

