HW 1

(1) Prove rigorously that the functions $f(z)$ and $\bar{f}(\bar{z})$ are simultaneously analytic. How are the derivatives related when they are analytic?

Power Series.

(2) Find the radius of convergence of the following power series

$$
\sum n^{p} z^{n}, \sum \frac{z^{n}}{n!}, \sum n!z^{n}, \sum z^{n!}
$$

(3) If $\sum a_{n} z^{n}$ has radius of convergence R, what is the radius of convergence of $\sum a_{n} z^{2 n} ?$ of $\sum a_{n}^{2} z^{n} ?$
(4) Let $\sum a_{n} z^{n}$ be a power series and K and k two positive numbers.
(a) Assume that for some complex number $z_{0},\left|a_{n} z_{0}\right|^{n}<K n^{k}$ for all $n \geq 0$. Show that the power series converges for every z such that $|z|<\left|z_{0}\right|$
(b) Do part (a) under the assumption that $\left|a_{0}+a_{1} z_{0}+\ldots+a_{n} z_{0}^{n}\right|<K n^{k}$ for all $n \geq 0$.

Complex Integration.

(5) Let γ be a closed path in \mathbf{C} and φ a continuous (complex-valued) function on (the image of) γ. Show that

$$
f_{n}(z):=\int_{\gamma} \frac{\varphi(\zeta)}{(\zeta-z)^{n+1}} d \zeta
$$

is holomorphic on the components of \mathbf{C} determined by γ and that

$$
f_{n}^{\prime}(z)=(n+1) \int_{\gamma} \frac{\varphi(\zeta)}{(\zeta-z)^{n+2}} d \zeta
$$

(6) Compute

$$
\int_{\gamma} x d z
$$

where γ is the directed line segment from 0 to $1+i$.
(7) Compute

$$
\int_{|z|=2} \frac{d z}{z^{2}-1}
$$

for the positive sense of the circle.
(8) Suppose that $f(z)$ is analytic on a closed curve γ (i.e., f is analytic in a region that contains γ). Show that

$$
\int_{\gamma} \overline{f(z)} f^{\prime}(z) d z
$$

is purely imaginary. (The continuity of $f^{\prime}(z)$ is taken for granted.)

