HW 1

(1) Prove rigorously that the functions f(z) and $\overline{f}(\overline{z})$ are simultaneously analytic. How are the derivatives related when they are analytic?

Power Series.

(2) Find the radius of convergence of the following power series

$$\sum n^p z^n, \sum \frac{z^n}{n!}, \sum n! z^n, \sum z^{n!}$$

- (3) If $\sum a_n z^n$ has radius of convergence R, what is the radius of convergence of $\sum a_n z^{2n}$? of $\sum a_n^2 z^n$?
- (4) Let $\sum a_n z^n$ be a power series and K and k two positive numbers.
 - (a) Assume that for some complex number z_0 , $|a_n z_0|^n < Kn^k$ for all $n \ge 0$. Show that the power series converges for every z such that $|z| < |z_0|$
 - (b) Do part (a) under the assumption that $|a_0 + a_1 z_0 + \ldots + a_n z_0^n| < Kn^k$ for all $n \ge 0$.

Complex Integration.

(5) Let γ be a closed path in **C** and φ a continuous (complex-valued) function on (the image of) γ . Show that

$$f_n(z) := \int_{\gamma} \frac{\varphi(\zeta)}{(\zeta - z)^{n+1}} d\zeta$$

is holomorphic on the components of ${\bf C}$ determined by γ and that

$$f'_n(z) = (n+1) \int_{\gamma} \frac{\varphi(\zeta)}{(\zeta-z)^{n+2}} d\zeta.$$

(6) Compute

$$\int_{\gamma} x dz$$

where γ is the directed line segment from 0 to 1 + i.

(7) Compute

$$\int_{|z|=2} \frac{dz}{z^2 - 1}$$

for the positive sense of the circle.

(8) Suppose that f(z) is analytic on a closed curve γ (i.e., f is analytic in a region that contains γ). Show that

$$\int_{\gamma} \overline{f(z)} f'(z) dz$$

is purely imaginary. (The continuity of f'(z) is taken for granted.)