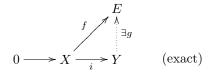
Name: _____

QUIZ 2

Throughout \mathscr{A} is an abelian category.

Definitions Let $E \in \mathscr{A}$. *E* is said to be an *an injective object* of \mathscr{A} (or simply an *injective*) if given a monomorphism $i: X \hookrightarrow Y$ in \mathscr{A} and a map $f: X \to E$, there exists a map $g: Y \to E$ such that $f = g \circ i$.



The category \mathscr{A} is said to have *enough injectives* if given an object X in \mathscr{A} there exists an injective object E in \mathscr{A} and a monomorphism $X \hookrightarrow E$ in \mathscr{A} .

- (1) The dual notion to injective is *projective*. The dual notion to enough injectives is *enough projectives*.
 - (a) Give a direct definition of a *projective object* in \mathscr{A} .

(b) Give a direct definition of an abelian category with enough projectives.

- (2) Let E be an injective object in \mathscr{A} .
 - (a) Show that if $i: E \hookrightarrow X$ is a monomorphism, then E is a direct summand of X. In other words show that $X = E \oplus E'$ for some object E' in \mathscr{A} . This means you have to show that there exists an object $E' \in \mathscr{A}$ and a monomorphism $j: E' \hookrightarrow X$ such that given maps $\alpha: E \to Y$ and $\beta: E' \to Y$, there exists a unique map $f: X \to Y$ such that $f \circ i = \alpha$ and $f \circ j = \beta$.

(b) Formulate the dual of the above statement. (Do not give the definition of a direct summand or a direct sum again. It has already been given.)