Name: _____

GRADUATE ALGEBRA-I QUIZ 1

Throughout k is a field, V a finite dimensional vector space over k, say $\dim_k V = n$, and $T: V \to V$ a linear transformation. Let k[X] be the polynomial ring over k in one variable. For any polynomial $p(X) \in k[X], p(T): V \to V$ has the usual meaning. Define $k[X] \times V \to V$ by the rule $(p(X), v) \mapsto p(T)v$. It is easy to see, and we will assume this in this quiz, that V becomes a k[X]-module via this operation.

(1) Without using the Cayley-Hamilton theorem, show that $V_{\rm tor} = V$.

(2) Suppose $n = 5, \lambda, \tau \in k$ are district elements, and the matrix of T with respect to some basis is

λ	1	0	0	0
0	λ	1	0	0
0	0	λ	0	0
0	0	0	au	1
0	0	0	0	τ

(a) Find Supp $(V) = \{ \mathfrak{p} \mid \mathfrak{p} \text{ is a non-zero prime ideal of } k[X] \text{ such that } \Gamma_{\mathfrak{p}}(V) \neq 0 \}.$

 $\mathbf{2}$

QUIZ 1

(b) For each \mathfrak{p} in $\operatorname{Supp}(V)$ write $\Gamma_{\mathfrak{p}}(V)$ as a direct sum of the form $\bigoplus_{i=1}^{r} k[X]/\mathfrak{p}^{\mu_{i}}$. Give a proof that your decomposition is correct. (The μ_{i} and r depend on \mathfrak{p}). (3) Suppose k is algebraically closed For $\lambda \in k$ and $d \in \mathbb{N}$ the Jordan matrix $J_d(\lambda)$ is defined to be the $d \times d$ matrix

Γ.	λ	1	0		0	0]
	$egin{array}{c} \lambda \\ 0 \\ 0 \end{array}$	λ	1		0	0
	0	0	λ		0	0
	: 0 0	: 0	÷	·	÷	: 1
	0	0	0		λ	1
	0	0	0		0	λ

i...e., $J_g(\lambda)$ has λ on the diagonal spots, 1 along the super-diagonal, and zero elsewhere.

(a) Show that there exists a basis of V with respect to which the matrix of T is

$\int J_{d_1}(\lambda_1)$	0	0	0]
0	$J_{d_2}(\lambda_2)$	0	0
		·	:
0	0	0	$J_{d_r}(\lambda_r)$

4

QUIZ 1

(b) Show that this representation of T as a matrix is unique up to a permutation of the Jordan blocks $J_{d_1}(\lambda_1), J_{d_2}(\lambda_2), \ldots, J_{d_r}(\lambda_r)$ This page is left intentionally balnk

this page is left intentionally blank