QUIZ 0

(1) Let A be a ring and M an A-module. Define what it means for a subset N of M to be a submodule of M. (2 marks)
(2) Let A be an integral domain and M an A-module. Show that $M_{\text {tor }}$ is a submodule of M. (2 marks)
(3) Let A be a ring. Show:
(a) $0 x=0, \forall x \in A$. (2 marks)
(b) $(-x) y=-(x y) \forall x, y \in A$. (2 marks)
(c) Let M be an A-module. For $a \in A$ and $x \in M$ show that $a(-x)=-a x$ and $0 x=0$. (2 marks)
Solutions. Note, if A is a ring and M an A-module, we will sometimes use the notation 0_{M} to denote the additive identity on M and at other times just use 0 to denote this element.
(1) N is a submodule of M if it is an additive subgroup of M, and for every $a \in A$ and $x \in N$ we have $a x \in N$.
[Comments: There is no need to require distributive properties, since these are inherited from M. From the definition given, it is clear that N is an A-module in its own right. Some of you wrote that N is a submodule if it is an A module by itself. That is not true unless you require the addition and scalar multiplication to be inherited from M. Consider $A=\mathbb{Z}$ and $M=\mathbb{Z} / 3 \mathbb{Z}=\{\overline{0}, \overline{1}, \overline{2}\}$. Since M is an abelian group and every abelian group is a \mathbb{Z}-module, M is an A-module. Consider the subset $N=\{\overline{0}, \overline{1}\}$. Define addition on N by the rules for $\mathbb{Z} / 2 \mathbb{Z}$. Then N is an abelian group, and hence an \mathbb{Z}-module. But it is not a submodule of M.]
(2) First let us show that $a 0_{M}=0_{M}$ for every $a \in A$. We have

$$
\begin{aligned}
a 0_{M} & =a\left(0_{M}+0_{M}\right) \\
& =a 0_{M}+a 0_{M}
\end{aligned}
$$

Now use cancellation in the additive group M to arrive at the required conclusion. Now suppose $x, y \in M_{\text {tor }}$. By definition of $M_{\text {tor }}$, there exist non-zero elements $a, b \in A$ such that $a x=0$ and $b y=0$. Since A is an integral domain therefore $a b \neq 0$. Let $c=a b$. Then

$$
\begin{aligned}
c(x-y) & =c x-c y(\text { why } ?) \\
& =(b a) x-(a b) y \\
& =b(a x)-a(b y) \\
& =b 0-a 0 \\
& =0 \text { (from what we proved earlier). }
\end{aligned}
$$

It follows (since $c \neq 0$) that $x-y \in M_{\text {tor }}$. Thus $M_{\text {tor }}$ is an additive subgroup of M. Moreover, if $a \in A$ and $x \in M_{\text {tor }}$, then picking $0 \neq b \in A$ such that $b x=0$ (such a b exists by definition of $M_{\text {tor }}$) we see that $b(a x)=a(b x)=$
$a 0=0$. Note that the last equality requires us to apply the result we proved earlier, namely $a 0_{M}=0_{M}$ for all $a \in A$. Thus $M_{\text {tor }}$ is a submodule of M.
(3) (a) $x=1 x=(0+1) x=0 x+x$. By cancellation $0 x=0$.
(b) $0=0 y=(-x+x) y=(-x) y+(x y)$. Thus, $(-x) y$ is an additive inverse for $x y$, i.e., $-(x y)=(-x) y$.
(c) We will use what we proved earlier in our solution to problem 2, namely $a 0_{M}=0_{M}$ for every $a \in A$. Thus $0=a 0=a(-x+x)=a(-x)+a x$. Thus $a(-x)$ is the additive inverse of $a x$. That was the assertion.

