
MAPPING CONES

1. Connecting Maps again

1.1. Kernels, cokernels and direct sums. Let A be ab abelian category.

(1) Let f : A → W be a map in A and let (K, i) = ker (f). For any object B
in A , we have

(1.1.1) ker

(
A⊕B

(
f 0

)
−−−−−→W

)
=

(
K ⊕B,

(
i 0
0 1B

))

This is seen as follows. First note that

(
i 0
0 1B

)
is a monomorphism.

Indeed if T is an object in A and

(
a
b

)
,

(
a′

b′

)
are two maps from T to A

such that (
i 0
0 1B

)(
a
b

)
=

(
i 0
0 1B

)(
a′

b′

)
then i ◦a = i ◦a′ and b = b′. Since i is a monomorphism it follows that(
a
b

)
=

(
a′

b′

)
.

Next, note that
(
f 0

)(i 0
0 1B

)
=

(
0 0
0 0

)
.

Finally, suppose (
a
b

)
: T → A⊕B

is a map such that that
(
f 0

)(a
b

)
= 0. Then f ◦a = 0 and by the

universal property of (K, i) we get a unique map k : T → K such that
i ◦k = a. It follows that(

i 0
0 1B

)(
k
b

)
=

(
a
b

)
.

Since

(
i 0
0 1B

)
is a monomorphism,

(
k
b

)
is the only map satisfying the

above equation. This proves the assertion.
(2) By duality we see that if f : W → A is a map in A and (C, p) = coker (f)

then

(1.1.2) coker

W
f

0


−−−→ A⊕B

 =

(
C ⊕B,

(
p 0
0 1B

))
.
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1.2. Let C be an exact category. Suppose we have a short exact sequence of
complexes of objects in C :

0→ A• → B• → C• → 0

Fix n ∈ Z. We have a commutative diagram with exact rows

(1.2.1) 0 // An

∂n

��

// Bn

∂n

��

// Cn

∂n

��

// 0

0 // An // Bn // Cn // 0

With the notations used in notes7.pdf, the connecting map

cn : Hn(C•)→ Hn+1(A•)

is the map one gets by applying the Snake Lemma to the exact commutative dia-
gram

(1.2.2) 0

��
F̃ //

��

Z̃n(A•) //

∂n
∗
��

Z̃n(B•) //

∂n
∗
��

Z̃n(C•) //

∂n
∗
��

0

��
0 //

��

Zn+1(A•) // Zn+1(B•) // Zn+1(C•) // F

0

In particular, if (K,u) = ker (Z̃n(B•)→ Zn+1(C•)) and (K ′, v) = coker (Z̃n(A•)→ Zn+1(B•))
and ϕ : K → K ′ is the composite ϕ = v ◦∂n∗ ◦u, then cn is characterised by the com-
mutativity of

K

����

ϕ // K ′

Hn(C•)
cn
// Hn+1(A•)

?�

OO

On the other hand, from (1.2.1) we have another connecting map

κn : Zn(C•)→ Z̃n+1(A•).

It turns out the connecting maps cn and κn are related. In fact we have the
following:

Proposition 1.2.3. The following diagram commutes

Zn(C•)

$

����

κn // Z̃n+1(A•)

Hn(C•)
cn
// Hn+1(A•)

?�
i

OO
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Proof. For any complexX• we have functorial mapsXn � Z̃n(X•( and Zn+1(X•) ↪→
Xn+1. It follows that the diagrams (1.2.1) and (1.2.2) are related. In fact we have
a three dimensional commutative diagram whose skeleton is given below with the
rear face arising from (1.2.1) and the front face from (1.2.2).

0

��

0

��

0

��

��>
>>

>>
>>

>
// •

��

�� ��>
>>

>>
>>

>
// •

��

�� ��>
>>

>>
>>

>
// •

��

�� ��>
>>

>>
>>

>
// 0

��

��>
>>

>>
>>

>

• //

��

• //

��

• //

��

• //

��

0

��

0 //

��

• // • // • // 0

0 //

��

^^========
• //N.

^^========
• //N.

^^========
• //N.

^^========
•

^^========

0

0

Let (K̄, ū) = ker (Bn → Cn+1) and (K̄ ′, v̄) = coker (An → Bn+1) and ϕ̄ : K̄ → K̄ ′

the composite ϕ̄ = v̄ ◦∂nB• ◦ ū. Consider the following diagram:

(1.2.4) K̄

����

%%LL
LLL

LLL
LLL

L
ϕ̄ // K̄ ′

K
ϕ //

����

K ′

ggNNNNNNNNNNNNN

Zn(C•)

$
$$ $$I

II
II

II
II

I
κn // Z̃n+1(A•)

OO

Hn(C•)
cn

// Hn+1(A•)
?�

OO

3 S

i

ffLLLLLLLLLL

We have to show that the bottom face commutes. This is similar to the diagram
in notes7.pdf (see proof of Lemma 1.1.2 in notes7.pdf). The orientation of two
of the arrows are different. But as in that cube, it is easy to see that five faces
other than the bottom face commute. Indeed, the front and rear faces commute
by definition of cn and κn. The west face commutes by the universal property of
cokernels and kernels, and by duality the east face also commutes. The top face
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can be expanded as follows:

K̄

ū

��

//

�1

K

u
��

Bn

∂n

��

//

�2

Z̃n(B•)

∂n
∗
��

Bn+1

v̄

��
�3

Zn+1(B•)oo

v

��
K̄ ′ K ′oo

Since each of the sub-rectangles �1, �2, and �3 commutes, the outer rectangle also
commutes. Thus the top face of (1.2.4) commutes. Now consider the diagram

K̄ // // Zn(C•)
κn //

����

Z̃n+1(A•) �
� // K̄ ′

Hn(C•)
cn
// Hn+1(A•)

?�

OO

From the comutativity of all except the bottom face of the cube (1.2.4), the two
routes from K̄ to K̄ ′ are the same. Since K̄ � Zn(C•) is an epimorphism and

Z̃n+1(A•) ↪→ K̄ ′ is a monomorphism, the rectangle in the middle commutes. �

2. Mapping Cones

Throughout this section C is an exact category and A is an abelian category.

2.1. Translations of complexes. Let C• be complex in C and i and integer.
Define a new complex C•[i[ in the following way.

(C•[i])n := Cn+i and ∂nC•[i] = (−1)i∂n+i
C• .

The complex C•[i] is called the i-th translate of C•. Note that

Hn(C•[i]) = Hn+i(C•).

2.2. Mapping cones. Suppose

f : P • → Q•

is map of complexes in A (recall, A is abelian).

Definition 2.2.1. The mapping cone of f , C• = C•f is the complex whose n-th
graded piece is

Cn = Pn+1 ⊕Qn

and whose coboundary maps are given by the formula

∂nC =

(
−∂n+1

P 0
fn+1 ∂nQ

)
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That ∂C is indeed a coboundary (i.e., C• is indeed a complex) is seen by the
following computation:

∂n+1
C

◦∂nC =

(
−∂n+2

P 0
fn+2 ∂n+1

Q

)(
−∂n+1

P 0
fn+1 ∂nQ

)
=

(
∂n+1
P

◦∂nP 0
−fn+2 ◦∂n+1

P + ∂n+1
Q

◦n+1 ∂n+1
Q

◦∂nQ

)
=

(
0 0
0 0

)
.

Consider the following diagram with split exact rows:

(2.2.2) 0 // Qn

 0
1Qn


//

∂n
Q

��

Pn+1 ⊕Qn
(
1Pn+1 0

)
//

∂C

��

P [n+ 1]

∂n+1
P

��

// 0

0 // Pn+1  0
1Qn+1


// Pn+2 ⊕Qn+1(

1Pn+2 0
)// Pn+2 // 0

Using ∂nC =

(
−∂n+1

P 0
fn+1 ∂nQ

)
, we see that (2.2.2) commutes. Indeed, we have

(
−∂n+1

P 0
fn+1 ∂nQ

)(
0

1Qn

)
=

(
0
∂nQ

)
=

(
0

1Qn+1

)
◦∂nQ

and

(
1Pn+2 0

)(−∂n+1
P 0

fn+1 ∂nQ

)
=
(
∂n+1
P 0

)
= ∂n+1

P

(
1Pn+1 0

)
.

We therefore have a short exact-sequence of complexes

(2.2.3) 0→ Q• → C•f → P •[1]→ 0

Proposition 2.2.4. Let f : P • → Q• be a map of complexes in A . For n ∈ Z
let cn : Hn+1(P •) → Hn+1(Q•) be the connecting map arising from the short exact
sequence of complexes (2.2.3) and the identity Hn(P •[1]) = Hn+1(P •). Then

cn = Hn+1(f).

Proof. As before, for any complex X• and any integer n, $ : Zn(X•) � Hn(X•),

j : Zn(X•) ↪→ Xn, π : Xn → Z̃n(X•, and i : Hn(X•) ↪→ Z̃n(X•) represent the
canonical maps.
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Fix n ∈ Z. Recall from diagram (3.1.1) of notes7.pdf that we have a commu-
tative diagram

(2.2.5) Pn+1 fn+1

// Qn+1

π
����

Zn+1(P •)

$
����

?�
j

OO

Z̃n+1(Q•)

Hn+1(P •)
Hn+1(f)

// Hn+1(Q•)
?�
i

OO

On the other hand, by Proposition 1.2.3 the following diagram commutes

(2.2.6) Zn+1(P •)

$
����

κn // Z̃n+1(Q•)

Hn+1(P •)
cn

// Hn+1(Q•)
?�
i

OO

Since $ is an epimorphism and i is a monomorphism, by (2.2.5) and (2.2.6) it is
enough for us to show that

(2.2.7) κn = π ◦fn+1 ◦ j.

Now consider diagram (2.2.2). Let (K, u) = ker (Pn+1 ⊕Qn → Pn+2) and (K ′, v) =
coker (Qn → Pn+2 ⊕Qn+1). Now the map Pn+1 ⊕Qn → Qn+1 is

(
∂n+1
P 0

)
, and

Qn → Pn+2 ⊕Qn+1 is

(
0
∂nQ

)
. Hence by (1.1.1) and (1.1.2) we have

(K, u) =

(
Zn+1(P •)⊕Qn,

(
j 0
0 1Qn

))

and

(K ′, v) =

(
Pn+2 ⊕ Z̃n+1(Q•),

(
1Pn+2 0

0 π

))
.

Moreover, one checks easily that the two natural maps K � Zn(P •[1]) = Zn+1(P •)

and Z̃n+1(Q•) ↪→ K ′ arising from (2.2.2) are
(
1 0

)
: Zn+1(P •)⊕Qn → Zn+1(P •)

and

(
0
1

)
: Z̃n+1(Q•)→ Pn+2 ⊕ Z̃n+1(Q•) respectively.

By definition of κn the following diagram commutes:
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Pn+1 ⊕Qn

−∂n+1 0
fn+1 ∂n


// Pn+2 ⊕Qn+1

1 0
0 π


����

K Zn+1(P •)⊕Qn
?�

j 0
0 1


OO

(
1 0

)
����

Pn+2 ⊕ Z̃n+1(Q•) K ′

Zn+1(P •)
κn

// Z̃n+1(Q•)

?�

0
1


OO

Thus (
0
1

)
(κn)

(
1 0

)
=

(
1 0
0 π

)(
−∂n+1 0
fn+1 ∂n

)(
j 0
0 1

)
,

i.e., (
0 0
κn 0

)
=

(
0 0

π ◦fn+1 ◦ j 0

)
.

This gives (2.2.7), as required. �

Corollary 2.2.8. One has a long exact sequence

. . .
Hn(f)−−−−→ Hn(Q•) −→ Hn(C•f ) −→ Hn+1(P •)

Hn+1(f)−−−−−→ Hn+1(Q•) −→ . . .

with the unlabelled maps arising from the exact sequence of complexes in (2.2.3).

Proof. This is clear from the Proposition. �
The main result of these notes on Mapping Cones is the following Corollary to

Proposition 2.2.4.

Corollary 2.2.9. A map of complexes in an abelian category is a quasi-isomorphism
if and only if the corresponding mapping cone is exact.

Proof. Immediate from Corollary 2.2.8 �
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