
DIRECT SUMS AND PRODUCTS AND SPLIT EXACT

SEQUENCES

1. Direct sums and products in additive categories

In this section A is an additive category

1.1. Let X and Y be objects in A and i : x → X ⊕ Y and j : Y → X ⊕ Y the
universal maps (necessarily monomorphisms). By the universal property of direct
sums, the maps 1X : X → X and 0: Y → X give us a unique map p : X ⊕ Y → X
such that p ◦ i = 1X and p ◦ j = 0. Similarly, we have a unique map q : X ⊕ Y → Y
characterised by q ◦ i = 0 and q ◦ j = 1Y . Note that if φ ◦p = ψ ◦p then φ ◦p ◦ i =
ψ ◦p ◦ i, whence φ = ψ as p ◦ i = 1X . Thus p is an epimorphism. Similarly q is an
epimorphism. We claim that

(1.1.1) i ◦p+ j ◦ q = 1X⊕Y .

To see this, let ϕ = i ◦p + j ◦ q. Then ϕ ◦ i = i ◦p ◦ i + j ◦ q ◦ i = i = 1X⊕Y ◦ i.
Similarly ϕ ◦ j = 1X⊕Y ◦ j, whence by the universal property of direct sums we
have ϕ = 1X⊕Y , i.e., (1.1.1) is true.

Proposition 1.1.2. The direct product of X and Y exists in A . In fact (X⊕Y, p, q)
is a direct product of X and Y .

Proof. Let x : T → X and y : T → Y be two maps in A . We have to show that there
exists a unique map f : T → X ⊕ Y such that p ◦f = x and q ◦f = y. Uniqueness
of a such an f follows from the fact that such an f must satisfy f = i ◦x + j ◦y.
Indeed, if f is such that p ◦f = x and q ◦f = y then

f = 1X⊕Y ◦f

= (i ◦p+ j ◦ q) ◦f (via (1.1.1))

= i ◦x+ j ◦y.

The existence of such an f is shown as follows. Let f = i ◦x+ j ◦y. Then p ◦f = x
and q ◦f = y. �

Remarks 1.1.3. 1) Let us agree to call a category A a pre-additive category if A
has a zero object 0, for every pair of objects X and Y in A we have HomA (X, Y ) is
an abelian group with the zero map as the zero element, and for f, g ∈ HomA (X, Y )
and maps σ : W → X and τ : Y → Z in A we have (f + g) ◦σ = f ◦σ + g ◦σ and
τ ◦ (f +g) = τ ◦f +τ ◦ g. Then the dual of Proposition 1.1.2 is that if a pre-additive
category A has direct products then it has direct sums. In other words the following
are equivalent for a pre-additive category A :

• A had direct sums.
• A has direct products.
• A is an additive category.
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2) From 1) it follows that the opposite category of an additive category is also
an additive category.

3) Since the opposite category of an exact category is also an exact category,
from 2) we get that the opposite category of an abelian category is an abelian
category.

1.2. The matrix notation. Let A be an additive category. Let Xj , j = 1, . . . , n
and Yi, i = 1, . . . ,m be objects in A . Set X =

⊕n
j=1Xj and Y =

⊕m
i=1 Yi. Since

Y is also the direct product of the Yi’s by Proposition 1.1.2, we have epimorphisms
pi : Y → Yi. Moroever a map y : T → Y is characterised by maps yi : T → Yi,
i = 1, . . . ,m, such that yi = pi ◦y for every i. Let us agree to denote the map y by
the column vector whose i-th entry is yi, i.e.,

y =

 y1
...
ym

 .

Since X is a direct sum, any map z : X → Z is completely determined by maps

zj : Xj → Z, j = 1, . . . , n where zj are the composites Xj ↪→ X
z−→ Z for j =

1, . . . , n, and where the monomorphism Xj ↪→ X is the universal map. Let us
agree to denote z by a row vector whose j-th entry is xj . Thus

z =
(
z1 . . . zn

)
It follows that any map ϕ : X → Y can be written as an m× n matrix

ϕ =

ϕ11 . . . ϕ1n

...
...

ϕm1 . . . ϕmn


with the j-th column representing the map Xj ↪→ X

ϕ−→ Y , or equivalently, the

i-th row representing the map X
ϕ−→ Y

pi−→ Yi. In other words, for 1 ≤ i ≤ m and

1 ≤ j ≤ n we have ϕij : Xj → Yi given by the composite Xj ↪→ X
ϕ−→ Y

pi−→ Yi. If

Z =
⊕l

h=1 Zi and ψ : Y → Z is a map, say

ψ =

ψ11 . . . ψ1m

...
...

ψl1 . . . ψlm


then

ψ ◦ϕ =

ψ11 . . . ψ1m

...
...

ψl1 . . . ψlm


ϕ11 . . . ϕ1n

...
...

ϕm1 . . . ϕmn


where the right side is the usual matrix product.

2. Split exact sequences

Let A be an abelian category and A, B objects in A . Let i : A → A ⊕ B,
j : B → A⊕B, p : A⊕B → A, q : A⊕B → B be the canonical maps arising from
the role of A⊕B as a direct sum as well as a direct product. It is easy to see that

0→ A
i−→ A⊕B q−→ B → 0
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is an exact sequence. In greater detail, first note p ◦ i = 1A, q ◦ i = 0, p ◦ j = 0 and

q ◦ j = 1B . Moreover, i =

(
1
0

)
, j =

(
0
1

)
, p =

(
1 0

)
and q =

(
0 1

)
. Suppose

f : T → A⊕B is a map in A . Then f =

(
a
b

)
, where a : T → A and b : T → B are

a = p ◦f and b = q ◦f . Suppose further that q ◦f = 0. Then b = 0, whence

f =

(
a
0

)
=

(
1
0

)
a = i ◦a.

Since i is a monomorphism, x = a is the only solution of the equation f = i ◦x.
It follows that (A, i) = ker q. Since q is an epimorphism, the displayed sequence is
exact. The sequence is an example of a split exact sequence, about which we say
more in the following subsection.

2.1. Let

(∗) 0→ A
s−→ X

π−→ B → 0

be a sequence of maps in the abelian category A and let i, j, p, q be as before.

Proposition 2.1.1. The following are equivalent for the sequence (∗).
(1) There is an isomorphism ψ : X −→∼ A ⊕ B such that the diagram below

commutes:

0 // A
s // X˜

ψ

��

π // B // 0

0 // A
i
// A⊕B

q
// B // 0

(2) The sequence (∗) is exact and there is a map τ : X → A such that τ ◦ s = 1A.
(3) The sequence (∗) is exact and there is a map σ : B → X such that π ◦σ =

1B.
(4) There exist maps τ : X → A and σ : B → X satisfying the three relations

(a) τ ◦ s = 1A, (b) π ◦σ = 1B, and (c) s ◦ τ + σ ◦π = 1X .

Proof. It is clear that (1) implies (2). Suppose (2) is true. Consider the commuta-
tive diagram with exact rows

0 // A
s // X

τ

��

π // C

��

// 0

0 // A
1A
// A // 0 // 0

By the Snake Lemma we get that ker τ −→∼ C. In other words we have map
σ : C → X such that (C, σ) = ker τ . We have a commutative diagram

C

σ

��

C

X
π
// C

This proves (3). More can be said about the relationship of the σ just found to τ , s
and π. First note that τ ◦ (1X − s ◦ τ) = τ − τ ◦ s ◦ τ = τ −1A ◦ τ = 0. Since (C, σ) =
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ker τ , this means there is unique map π′ : X → C such that σ ◦π′ = 1X − s ◦ τ . We
then have the following sequence of equalities:

π′ = π ◦σ ◦π′

= π ◦ (1X − s ◦ τ)

= π − π ◦ s ◦ τ
= π

since π ◦ s = 0. This means σ ◦π = 1X − s ◦ τ . Thus (2) implies that if σ is defined
to be the kernel of τ , then σ satisfies π ◦σ = 1B and s ◦ τ + σ ◦π = 1X . Thus (2)
implies (4) also.

By duality we see that (3) implies (2) with τ = cokerσ and again by duality
that it also implies (4). Thus (2) and (3) are equivalent statements with τ of (2)
related to σ of (3) by σ = ker τ and τ = cokerσ and when so related, we have
s ◦ τ + σ ◦π = 1X .

Finally suppose (4) is true. The relations τ ◦ s = 1A and π ◦σ = 1B imply
that π and τ are epimorphisms and s and σ are monomorphisms. Then π =
π ◦ (s ◦ τ + σ ◦π) = π ◦ s ◦ τ + π. Hence π ◦ s ◦ τ = 0. Since τ is an epimorphism, we
get π ◦ s = 0. By duality we get τ ◦σ = 0. Define ψ : X → A⊕B by the formula

ψ =

(
τ
π

)
.

It follows that

ψ ◦ s =

(
τ
π

)
s =

(
τ ◦ s
π ◦ s

)
=

(
1A
0

)
= i

and since q =
(
0 1B

)
, we have

q ◦ψ =
(
0 1B

)(τ
π

)
= π.

Thus the diagram

0 // A
s // X

ψ

��

π // B // 0

0 // A
i
// A⊕B

q
// B // 0

commutes. It remains to show that ψ is an isomorphism. Define ϕ : A ⊕ B → X
by the formula ϕ =

(
s σ

)
. Then

ϕ ◦ψ =
(
s σ

)(τ
π

)
= s ◦ τ + σ ◦π = 1X

by the hypothesis in (4). On the other hand, since we have shown π ◦ s = τ ◦σ = 0,
we have

ψ ◦ϕ =

(
τ
π

)(
s σ

)
=

(
τ ◦ s τ ◦σ
π ◦ s π ◦σ

)
=

(
1A 0
0 1B

)
= 1A⊕B .

Thus ψ is an isomorphism. This gives (1). �

Definition 2.1.2. The sequence (∗) is said to be split exact if it satisfies any of
the equivalent conditions of Proposition 2.1.1.
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