
COHOMOLOGY OF COMPLEXES

1. Snake Lemma again

Let C be an exact category.

1.1. Functoriality of the Snake Lemma. Suppose we are given two commuta-
tive diagrams, (∗)1 and (∗)2 with exact rows and columns as below.

(∗)k 0

��
Ak

αk

��

// Bk

βk

��

// Ck

γk

��

// Dk

δk
��

// Ek

εk

��
A′k

��

// B′k // C ′k // D′k // E′k

0

Fix k ∈ {1, 2}. Let Kk = ker (Ck → D′k) and K ′k = coker (Bk → C ′k) and ϕk : Kk →
K ′k the composite

Kk ↪→ Ck
γk−→ C ′k � K ′k.

If κk : ker δk → cokerβk is the connecting homomorphism given by the Snake
Lemma, then we know that κk fits into the commutative diagram

(1.1.1) Kk

����

ϕk // K ′k

ker δk κk

// cokerβk
?�

OO

Next suppose we have a “map” (∗)1 → (∗)2 between the two commutative diagrams,
i.e., a set of maps A1 → A2, B1 → B2, . . . ,E1 → E2, A′1 → A′2, . . .E′1 → E′2
such that the resulting three dimensional diagram commutes. The skeleton of the
diagram is given below with the front face representing (∗)2 and the rear face
representing (∗)1.
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Lemma 1.1.2. In the above situation the following diagram commutes

ker δ1

��

κ1 // cokerβ1

��
ker δ2 κ2

// cokerβ2

where the unlabelled arrows are the natural ones.

Remark: This is a way of saying that the connecting map in the Snake Lemma is
“functorial”.

Proof. We only sketch the proof and leave it to the reader to flesh out the details.
Consider the following cube:

K1

��

##G
GG

GG
GG

GG
ϕ1 // K ′1

%%KK
KKK

KKK
KKK

K2
ϕ2 //

��

K ′2

ker δ1

##H
HH

HH
HH

HH
κ1 // cokerβ1

%%LL
LLL

LLL
LL

OO

ker δ2 κ2

// cokerβ2

OO
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We have to show that the bottom face commutes. It is easy to see the remaining
five faces commute. For example the front and rear faces commute by (1.1.1). The
west face commutes by universal properties of kernels, and the east face by the
universal properties of cokernels. The top face commutes because the following
three rectangles commute, namely (a) the rectangle with vertices K1, K2, C1, and
C2; (b) the rectangle with vertices C1, C2, C ′1, C ′2; and (c) the rectangle with
vertices C ′1, C ′2, K ′1, and K ′2. To prove that the bottom face of our cube commutes,
consider the diagram:

K1

"" ""F
FF

FF
FF

F

ker δ1
κ1 //

��

cokerβ1

��
ker δ2 κ2

// cokerβ2
� q

""E
EE

EE
EE

K ′2

From our earlier analysis of the cube above this diagram, the two routes from K1

to K ′2 presented by the diagram are the same. Since the diagonal arrow starting
at the northwest corner is an epimorphism and the diagonal arrow ending at the
southeast corner is a monomorphism, it follows that the rectangle in the middle
commutes. �

2. Cohomology

In this section C is an exact category.

2.1. Notations. 1) If i : A → B is a monomorphism in C then we often write
(B/A, p) for the cokernel of i. Thus B/A makes sense as an object (up to isomor-
phism) whenever A is a sub-object of B. If the epimorphism p is remembered, then
(B/A, p) is unique up to unique isomorphism.

2) If (A•, ∂) is a complex of objects in A , we write Zn(A•) = ker (An
∂n

−−→ An+1),

Z̃n(A•) = coker (An−1
∂n−1

−−−→ An), and Bn(A•) = im(∂n−1). When the context is

clear, we write Zn, Z̃n, Bn instead of Zn(A•), etc.

2.2. Cohomology. Let A• be a complex of objects in C . Recall that the n-th
cohomology of A• (for n ∈ Z) is

Hn(A•) = Zn(A•)/Bn(A•).

There are other descriptions of Hn(A•). Since the composite An−1 → An →
An+1 is zero, by definition of a cokernel, we have a map Z̃n → An. Moreover, the

composite Z̃n → An+1 → An+2 is zero and hence by definition of a kernel, the map

Z̃n → An+1 factors uniquely as Z̃n → Zn+1 ↪→ An+1. Thus we have maps

(2.2.1) ∂n∗ : Z̃n → Zn+1 (n ∈ Z)
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which fit into a commutative diagrams (one for each n ∈ Z)

An

����

∂n
// An+1

Z̃n
∂n
∗

// Zn+1
?�

OO

It is clear that

(2.2.2) Hn(A•) = ker ∂n∗ and Hn+1(A•) = coker ∂n∗ (n ∈ Z).

Next let f : A• → B• be a map of complexes. For each n ∈ Z have a natural
map Zn(A•)→ Zn(B•) arising from the universal property of kernels. We therefore
have the composite Zn(A•) → Zn(B•) � Hn(B•). It is clear that the composite
Bn(A•) ↪→ Zn(A•)→ Hn(B•) is zero. Hence we get a map

(2.2.3) Hn(f) : Hn(A•)→ Hn(B•).

One checks easily that Hn(f ◦ g) = Hn(f) ◦Hn(g). In other words, Hn is a functor
from the category of complexes on C to C .

Theorem 2.2.4. Let

0→ A•
f−→ B•

g−→ C• → 0

be an exact sequence of complexes in the exact category C . Then there exist maps
cn : Hn(C•)→ Hn(A•), one for each n ∈ Z, giving an exact sequence

. . .
Hn(f)−−−−→ Hn(B•)

Hn(g)−−−−→ Hn(C•)
cn−→ Hn+1(A•)

Hn+1(f)−−−−−→ Hn+1(B•)
Hn+1(g)−−−−−→ . . .

Moreover if we have a commutative diagram of complexes with exact rows

0 // A•1

a

��

f1 // B•1

b

��

g1 // C•1

c

��

// 0

0 // A•2 f2

// B•2 g2
// C•2 // 0

then using cn as the symbol for the n-th connecting map for both the short exact
sequences in the diagram, the following diagram commutes for every n ∈ Z:

Hn(C•1 )
cn //

Hn(c)

��

Hn(A•1)

Hn(a)

��
Hn(C•2 )

cn
// Hn(A•2)

Proof. For n ∈ Z consider the commutative diagram with exact rows

0 // An
fn

//

∂n

��

Bn
gn //

∂n

��

Cn //

∂n

��

0

0 // An+1

fn+1

// Bn+1

gn+1

// Cn+1 // 0

By the Snake Lemma, for each n we have two exact sequences

0→ Zn(A•)→ Zn(B•)→ Zn(C•)
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and

Z̃n+1(A•)→ Z̃n+1(B•)→ Z̃n+1(C•)→ 0.

We therefore have, for each n, a commutative diagram with exact rows and columns

0

��
F̃ //

��

Z̃n(A•) //

∂n
∗
��

Z̃n(B•) //

∂n
∗
��

Z̃n(C•) //

∂n
∗
��

0

��
0 //

��

Zn+1(A•) // Zn+1(B•) // Zn+1(C•) // F

0

where the maps ∂n∗ are as in (2.2.1), F̃ = ker (Z̃n(A•)→ Z̃n(B•)), and F =
coker (Zn(B•)→ Zn(C•)). Applying the Snake Lemma and using (2.2.2) we get the
required long exact sequence. The second assertion of the theorem is an immediate
consequence of Lemma 1.1.2. �

3. Homotopy

3.1. The functor A• 7→ Hn(A•) revisited. Suppose C is an exact category and

A• is a complex in C . Let Zn = Zn(A•) and Z̃n = Z̃(A•) be as before. We have a
commutative diagram

Zn �
� j //

$
����

An

π����
Hn(A•) �

�

i
// Z̃n

where the horizontal arrows are monomorphisms and the downward arrows are
epimorphisms.

Now suppose f : A• → B• is a map pf complexes. It is easy to see that we have
a commutative cube:

An
fn

//

π

����

Bn

π

����

Zn(A•)
3 Sj

eeKKKKKKKKKK
//

$

����

Zn(B•)
3 Sj

eeLLLLLLLLLL

$

����

Z̃n(A•) // Z̃n(B•)

Hn(A•)
2 R

i

eeJJJJJJJJJJ

Hn(f)
// Hn(B•)
2 R

i

eeJJJJJJJJJJ
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In particular we have the following commutative diagram

(3.1.1) An
fn

// Bn

π����
Zn(A•)

$

����

?�
j

OO

Z̃n(B•)

Hn(A•)
Hn(f)

// Hn(B•)
?�
i

OO

3.2. Homotopies. Throughout this subsection all objects and all maps are in an
abelian category A .

Definition 3.2.1. Let f, g : A• ⇒ B• be two maps of complexes in A . A homotopy
from f to g is a sequence s = (sn)n∈Z of maps sn : An → Bn−1 such that

fn − gn = ∂n−1B• sn + sn+1∂nA• (n ∈ Z).

If this is so, we write f ∼ g. Note that f ∼ g if and only if g ∼ f . We say f is
homotopic to g if f ∼ g.

Proposition 3.2.2. Let f, g : A• ⇒ B• be two maps of complexes in A such that
f ∼ g. Then

Hn(f) = Hn(g) (n ∈ Z).

Proof. Fix n ∈ Z. Let i, j, π, and $ be as in the previous subsection. Note that
∂nA• ◦ j = 0 and π ◦∂n−1B• = 0. It follows that

π ◦ (fn − gn) ◦ j = π ◦ (∂n−1B• sn + sn+1∂nA•) ◦ j = 0.

Thus π ◦fn ◦ j = π ◦ gn ◦ j. According to the commutative diagram (3.1.1), this
means

i ◦Hn(f) ◦$ = i ◦Hn(g) ◦$.

Since i is a monomorphism and $ is an epimorphism, this means Hn(f) = Hn(g).
�

6


