SOME BASIC RESULTS FOR EXACT CATEGORIES

Throughout % is an exact category.

(1)

Let A € €. We have

(a) coker (0 — A) = (A 14, A).

(b) ker (A — 0) = (A 22 A).

Proof. By duality, it is enough to prove (a). Let f: A — T be any map

in ¢ (note that the composite 0 — A ENG " necessarily zero). It is clear
that f factors uniquely through 14. |

Let f: A— B be amap in %.
(a) The following are equivalent:

(i) The sequence 0 — A L, B is exact.
(ii) The map f is a monomorphism.
(iil) ker (f) =0
(b) The following are equivalent:
(i) The sequence A I B = 0 is exact.
(ii) The map f is an epimorphism.
(iil) coker (f) = 0.

Proof. Clearly (b) follows from (a) by duality. For (a), suppose (i) is true.
Consider the standard factorisation of f:

A — coim(f) = im(f) — B.

Since the composites of monomorphisms is a monomorphism (using the
cancellation from left of monomorphisms), we only have to show that A —
coim(f) is a monomorphism. But by part (a) of Problem 1, this is the map
14: A— A. Hence f is a monomorphism giving (ii).

Next suppose (ii) is true, i.e., f is a monomorphism. Then 0 — A
satisfies the universal property for ker (f). Indeed, if g: T — A is a map
such that fog = 0, then fog = fo0 and we can cancel the f from the
left by definition of monomorphism. Thus ¢ = 0 and hence factors as
T — 0 — A. Thus (iii) is true.

We make the following general observation now. Let D € % be any
object. Note that 1p: D — D is a monomorphism. If we apply (ii) = (iii)
to the special case of f = 1p, we see that ker (1p) = 0. By Problem 1(a)
it follows that

im(0 — D) =0.
Now suppose (iii) is true, i.e., ker (f) = 0. In view of the above equality
0= AL Bis exact. O
(3) Let Ae%.

(a) im(0 — A) =0.



(b) coim(A — 0) = 0.
Proof. Part (a) is simply (x). Part (b) is the dual of part (a). O

Let f: A— B be amap in €. Then
(a) 0o ker(f) = A L, B is exact.
(b) A LB coker (f) — 0 is exact.

Proof. Asusual, we only prove (a), and note that this is sufficient. We make
the following general observation. Suppose 0 — X — Y is exact. Then by
Problem 2, ker (X — Y) = 0 and hence by Problem 1(a), im(X —Y) = X.
In our case, since ker (f) — A is a monomorphism by definition of kernels,
Problem 2(a) gives us that 0 — ker (f) — A is exact. From what we just

said, im(ker (f) — A) = ker (f). It follows that 0 — ker (f) — A L Bis
exact. 0

Let f: A — B be a map in 4. Let p: A — coim(f) be the natural
epimorphism and i: im(f) < B the natural monomorphism.

(a) If f is a monomorphism then p: A — coim(f) is an isomorphism.
(b) If f is an epimorphism then : im(f) is an isomorphism.

(¢) If f is a monomorphism and an epimorphism it is an isomorphism.

Proof. Tt is enough to prove (a) for (b) follows by duality and (c) by (a),
(b), the standard factorisation of f, and the fact that in an exact category
the natural map coim(f) — im(f) is an isomorphism.

To prove (a), suppose f is a monomorphism. Then ker (f) = 0 by
Problem 2(a). By Problem 1(a), we get coim(f) = coker (0 — A) = A. O

Let 42 B2 € be two maps in €.
(a) If Boar: A — C is a monomorphism, then so is a: A — B.
(b) If Boar: A — C' is an epimorphism, then so is §: B — C.

Proof. As usual it is enough to prove (a). Suppose f,g: T = A are two
maps such that aof = aog. Then Soaof = Poaog. Since fBoa is a
monomorphism, we get f = g. ([

Suppose i: S — A is a monomorphism, a: A — B a map. Suppose further

that ker (a) = (K,j) and j factors as a composite K <> S - A. Then
(K, ¢) = ker (aoi).

em Proof. Suppose g: T — S is a map such that (aoi)og = 0. Then
ao(iog) = 0 and since (K, i) = ker (o) we have a unique map v: T — K
such that joy = iog. Since j = ioy, we get iopoy = iog. Since i is a
monomorphism, we get woy =g. If v': T — K is another map such that
po~' = g, then the above steps can be reversed to get joy' =iog = jor,
which means v = +'. O

Let
A—B—C
be a complex in €. Then the following are equivalent.
(a) A— B — C is exact.
(b) A — ker (B — C) — 0 is exact.
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(¢) 0 — coker (A — B) — (' is exact.

Proof. By duality it is enough to prove that (a) and (b) are equivalent. Let
us write f for the map A — B and set K = ker (B — C). We have the
standard factorisation of f: A — B as

A — coim(f) = im(f) — B

with the first arrow an epimorphism and the last arrow a monomorphism.
In particular, since the middle arrow is an isomorphism, A — im(f) is
an epimorphism. Since the map A — C is zero, and A — im(f) is
an epimorphism, it follows that im(f) = 0. Indeed if 7: A — im(f) is
the epimorphism we are talking about and h: im(f) — C the composite
im(f) = B — C, then hor =0 = 0om, and 7 can be cancelled from the
right, being an epimorhism, to give h = 0 as asserted. We therefore have a
map im(f) — K, which is necessarily a monomorphism by Problem 6(a).
We thus have a factorisation of f as follows:

A — coim(f) = im(f) - K — B

Now suppose (a) is true, i.e., A — B — C'is exact. Then K = im(f)
and hence the natural map A — K is an epimorphism. By (ii) = (i) of
Problem 2(b), we get that A — K — 0 is exact, and hence (b) is true.

Conversely, suppose A — K — 0 is exact. Then A — K is an epi-
morphism. On the other hand A — K factors as A — im(f) — K. By
Problem 6 (b) we get im(f) — K is an epimorphism. Thus im(f) — K
is a monomorphism and an epimorphism. By Problem 5(c) it is an isomor-
phism, i.e., im(f) = K. This means A — B — C is exact. O

Suppose g: B — C is a map in €.

(a) If j: C — D is a monomorphism, then ker (jog) = ker (g).

(b) If p: A — B is an epimorphism, then coker gop) = coker (g).

Proof. As usual, it is enough to prove (a). Let (K,i) = ker (g). Let h: T —
B be a map such that (jog)oh = 0. This means jo(goh) =0 =1i00. Since
J is a monomorphism, this yields goh = 0. Since (K, i) = ker (g), there is
a unique map s: T — K such that i0s = h. This proves (a). O



