
SOME BASIC RESULTS FOR EXACT CATEGORIES

Throughout C is an exact category.

(1) Let A ∈ C . We have

(a) coker (0→ A) = (A
1A−−→ A).

(b) ker (A→ 0) = (A
1A−−→ A).

Proof. By duality, it is enough to prove (a). Let f : A → T be any map

in C (note that the composite 0 → A
f−→ T is necessarily zero). It is clear

that f factors uniquely through 1A. �

(2) Let f : A→ B be a map in C .
(a) The following are equivalent:

(i) The sequence 0→ A
f−→ B is exact.

(ii) The map f is a monomorphism.
(iii) ker (f) = 0

(b) The following are equivalent:

(i) The sequence A
f−→ B → 0 is exact.

(ii) The map f is an epimorphism.
(iii) coker (f) = 0.

Proof. Clearly (b) follows from (a) by duality. For (a), suppose (i) is true.
Consider the standard factorisation of f :

A� coim(f) −→∼ im(f) ↪→ B.

Since the composites of monomorphisms is a monomorphism (using the
cancellation from left of monomorphisms), we only have to show that A→
coim(f) is a monomorphism. But by part (a) of Problem 1, this is the map
1A : A→ A. Hence f is a monomorphism giving (ii).

Next suppose (ii) is true, i.e., f is a monomorphism. Then 0 → A
satisfies the universal property for ker (f). Indeed, if g : T → A is a map
such that f ◦ g = 0, then f ◦ g = f ◦0 and we can cancel the f from the
left by definition of monomorphism. Thus g = 0 and hence factors as
T → 0→ A. Thus (iii) is true.

We make the following general observation now. Let D ∈ C be any
object. Note that 1D : D → D is a monomorphism. If we apply (ii) ⇒ (iii)
to the special case of f = 1D, we see that ker (1D) = 0. By Problem 1(a)
it follows that

(∗) im(0→ D) = 0.

Now suppose (iii) is true, i.e., ker (f) = 0. In view of the above equality

0→ A
f−→ B is exact. �

(3) Let A ∈ C .
(a) im(0→ A) = 0.
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(b) coim(A→ 0) = 0.

Proof. Part (a) is simply (∗). Part (b) is the dual of part (a). �

(4) Let f : A→ B be a map in C . Then

(a) 0→ ker (f)→ A
f−→ B is exact.

(b) A
f−→ B → coker (f)→ 0 is exact.

Proof. As usual, we only prove (a), and note that this is sufficient. We make
the following general observation. Suppose 0→ X → Y is exact. Then by
Problem 2, ker (X → Y ) = 0 and hence by Problem 1(a), im(X → Y ) = X.
In our case, since ker (f)→ A is a monomorphism by definition of kernels,
Problem 2(a) gives us that 0 → ker (f) → A is exact. From what we just

said, im(ker (f) → A) = ker (f). It follows that 0 → ker (f) → A
f−→ B is

exact. �

(5) Let f : A → B be a map in C . Let p : A � coim(f) be the natural
epimorphism and i : im(f) ↪→ B the natural monomorphism.
(a) If f is a monomorphism then p : A→ coim(f) is an isomorphism.
(b) If f is an epimorphism then i : im(f) is an isomorphism.
(c) If f is a monomorphism and an epimorphism it is an isomorphism.

Proof. It is enough to prove (a) for (b) follows by duality and (c) by (a),
(b), the standard factorisation of f , and the fact that in an exact category
the natural map coim(f)→ im(f) is an isomorphism.

To prove (a), suppose f is a monomorphism. Then ker (f) = 0 by
Problem 2(a). By Problem 1(a), we get coim(f) = coker (0→ A) = A. �

(6) Let A
α−→ B

β−→ C be two maps in C .
(a) If β ◦α : A→ C is a monomorphism, then so is α : A→ B.
(b) If β ◦α : A→ C is an epimorphism, then so is β : B → C.

Proof. As usual it is enough to prove (a). Suppose f, g : T ⇒ A are two
maps such that α ◦f = α ◦ g. Then β ◦α ◦f = β ◦α ◦ g. Since β ◦α is a
monomorphism, we get f = g. �

(7) Suppose i : S → A is a monomorphism, α : A→ B a map. Suppose further

that ker (α) = (K, j) and j factors as a composite K
ϕ−→ S

i−→ A. Then
(K, ϕ) = ker (α ◦ i).

em Proof. Suppose g : T → S is a map such that (α ◦ i) ◦ g = 0. Then
α ◦ (i ◦ g) = 0 and since (K, i) = ker (α) we have a unique map γ : T → K
such that j ◦γ = i ◦ g. Since j = i ◦ϕ, we get i ◦ϕ ◦γ = i ◦ g. Since i is a
monomorphism, we get ϕ ◦γ = g. If γ′ : T → K is another map such that
ϕ ◦γ′ = g, then the above steps can be reversed to get j ◦γ′ = i ◦ g = j ◦γ,
which means γ = γ′. �

(8) Let
A −→ B −→ C

be a complex in C . Then the following are equivalent.
(a) A −→ B −→ C is exact.
(b) A −→ ker (B → C) −→ 0 is exact.
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(c) 0 −→ coker (A→ B) −→ C is exact.

Proof. By duality it is enough to prove that (a) and (b) are equivalent. Let
us write f for the map A → B and set K = ker (B → C). We have the
standard factorisation of f : A→ B as

A� coim(f) −̃−→ im(f) ↪→ B

with the first arrow an epimorphism and the last arrow a monomorphism.
In particular, since the middle arrow is an isomorphism, A → im(f) is
an epimorphism. Since the map A → C is zero, and A → im(f) is
an epimorphism, it follows that im(f) = 0. Indeed if π : A → im(f) is
the epimorphism we are talking about and h : im(f) → C the composite
im(f) → B → C, then h ◦π = 0 = 0 ◦π, and π can be cancelled from the
right, being an epimorhism, to give h = 0 as asserted. We therefore have a
map im(f) → K, which is necessarily a monomorphism by Problem 6(a).
We thus have a factorisation of f as follows:

A� coim(f) −̃−→ im(f) ↪→ K ↪→ B

Now suppose (a) is true, i.e., A −→ B −→ C is exact. Then K = im(f)
and hence the natural map A → K is an epimorphism. By (ii) ⇒ (i) of
Problem 2(b), we get that A→ K → 0 is exact, and hence (b) is true.

Conversely, suppose A → K → 0 is exact. Then A → K is an epi-
morphism. On the other hand A → K factors as A → im(f) ↪→ K. By
Problem 6 (b) we get im(f) → K is an epimorphism. Thus im(f) → K
is a monomorphism and an epimorphism. By Problem 5(c) it is an isomor-
phism, i.e., im(f) = K. This means A→ B → C is exact. �

(9) Suppose g : B → C is a map in C .
(a) If j : C → D is a monomorphism, then ker (j ◦ g) = ker (g).
(b) If p : A→ B is an epimorphism, then coker g ◦p) = coker (g).

Proof. As usual, it is enough to prove (a). Let (K, i) = ker (g). Let h : T →
B be a map such that (j ◦ g) ◦h = 0. This means j ◦ (g ◦h) = 0 = i ◦0. Since
j is a monomorphism, this yields g ◦h = 0. Since (K, i) = ker (g), there is
a unique map s : T → K such that i ◦ s = h. This proves (a). �
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