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Throughout A is PID.

1. Basic Definitions

The set of non-zero prime ideals of A will be denoted S. Thus

S = {p | p is a prime ideal of A and p 6= 0}.

• If I = (a) is an ideal and M a module, then (as before), we write

ΓI(M) = 0 :
M
I

= {x ∈M | there exists n ≥ 0 such that anx = 0}
= lim−−→n

HomA(A/In, M)

• If x ∈M , the annihilator of x is the ideal

ann(x) = {a ∈ A | ax = 0}.

A period of x is a generator of ann(x). Note that periods are unique up to
multiplication by a unit, and we often write “the” period of x instead of “a”
period of x. Note that the period of x is non-zero if and only if x ∈ Mtor,
and x = 0 if and only if its period is a unit.
• The annihilator of M is the ideal

ann(M) =
⋂
x∈M

ann(x).

An non-zero element of ann(M) is called an exponent of M . Clearly M
has an exponent only if M is a torsion module, i.e., only if M = Mtor. A
sufficient condition for a torsion module M to have an exponent is that M
is finitely generated. This is not necessary however. Indeed let M be an
infinite direct sum of the Z-module Z/pZ where p is a prime number, and
regard this as a Z-module. Then p is an exponent of M , even though M is
not finitely generated.
• For a module M and for p ∈ S, define the p-socle of M to be the submodule

socp(M) = HomA(A/p, M). If κ(p) = A/p, then socp(M) is a κ(p) vector
space.
• For a module M and an element x ∈ M , the symbol (x) will denote the

submodule of M generated by x. In other words

(x) = Ax.

A module M is said to be cyclic if M = (x) for some x ∈M .

2. Torsion modules over PIDs

Recall that an A-module is called torsion if Mtor = M .
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2 NOTES 3

2.1. We begin with a general description of torsion A-modules. It can be regarded
as a primary decomposition theorem, except we do not assume M is finitely gener-
ated.

Proposition 2.1.1. Let M be a torsion module. Then

(2.1.1.1) M =
⊕
p∈S

Γp(M).

More precisely, the submodule
∑

p∈S Γp(M) of M is an internal direct sum of the
constituent summands.

Remark: Since the decomposition (2.1.1.1) is an internal direct sum, it is a canonical
decompostion.

Proof. Let x ∈M and let ann (x) = (a). Then a = πr1 . . . πrll where for i = 1, . . . , l,
πi are distinct prime elements and ri positive integers. By the Chinese Remainder

Theorem, A/(a) −→∼
∏l
i=1A/(π

ri
i ). Let ei ∈ A/(a), i = 1, . . . , l be the element

corresponding to (0, . . . , 0, 1, 0 . . . , 0) ∈
∏l
i=1A/(π

ri
i ) where the 1 is in the i-th spot

of the l-tuple. Then
∑l
i=1 ei = 1 ∈ A/(a). Since Ax is an A/(a)-module, we

have x = (e1 + · · · + el)x =
∑l
i=1 eix. Now πriei = 0 by definition of ei. Hence

eix ∈ Γ(πi)(M). Thus x ∈
∑

p∈S Γp(M). Hence M =
∑

p∈S Γp(M).

Next suppose pi ∈ S, i = 1, . . . , n, are distinct prime ideals and xi ∈ Γpi(M) are
elements such that x1 + · · ·+xn = 0. We have to show that xi = 0 for each i. This
will prove the proposition. Let N be a positive number such that πNi xi = 0. Such
an N clearly exists. Now πN1 and (π2 . . . πn)N are clearly coprime. Let a and b be
elements of A such that aπN1 + b(π2 . . . πn)N = 1. Then

x1 = (aπN1 + b(π2 . . . πn)N )x1

= b(π2 . . . πn)Nx1

= −b(π2 . . . πn)N (x2 + · · ·+ xn)

= 0.

The same argument shows that xj = 0 for every j. This completes the proof. �

2.2. Finitely generated p-torsion modules. For this subsection. Fix p ∈ S,
say p = (π). A module M is said to be p-torsion if Γp(M) = M . If M is p-torsion
and x ∈ M , then the period of x must be of the form πk for a suitable k ≥ 0. In
greater detail, we know that πnx = 0 for some n ≥ 1. If a is a period of x, then
a | πn, giving the result. In particular if a ∈ A is such that π - a, then the A-map
µa : M →M given by x 7→ ax is necessarily injective.

Fix a finitely generated p-torsion module M . Since M is finitely generated and
torsion, ann(M) 6= 0 and hence M has an exponent. Let x ∈ M be an element
such that the period of x is an exponent of M . Since M is finitely generated,
such an x exists. To see this let ann(M) = (a). Then a = uπr for a suitable
non-negative integer n and a unit u. Indeed, suppose a = πrb with π - b. Then
0 = µa = µb ◦µπr . However, as we pointed out, µb is an injective map, whence
µπr = 0, and hence πr ∈ ann(M). It follows that b is a unit, as claimed. Thus we
may may set a = πr. If r = 0, then M = 0 and clearly the period of x = 0 is an
exponent of M . Otherwise, there exists x ∈ M such that πr−1x 6= 0, and clearly
the period of such an x is πr.
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With M and x as above (i.e., M finitely generated and p-torsion, and x ∈ M
such that the period of x is an exponent of M), set

M := M/(x).

Definition 2.2.1. If ȳ ∈ M and y ∈ M is an element mapping to ȳ under the
canonical surjection M � M , then we say that y is a representative of ȳ (or y
represents ȳ). We say y is a special representative of ȳ if the period of y equals the
period of ȳ.

Lemma 2.2.2. Let ȳ ∈M . Then there exists a special representative of ȳ in M .

Proof. First pick any representative y of ȳ. Let πr be the period of x. Suppose
πn is the period of ȳ. Then πn−1y 6= 0 (for πn−1ȳ 6= 0). Moreover πny ∈ (x),
say πny = bx, b ∈ A. We may write b = cπs where π - c. Then πny = cπsx. If
s ≥ r, then πny = 0 and hence πn is a period of y, i.e., y is a special representative
of ȳ. Otherwise, s < r and πn+r−sy = 0, and in fact πn+r−s is a period of y. It
follows that n + r − s ≤ r since r is an exponent of M . Hence s − n ≥ 0. Now
y − cπs−nx represents ȳ and clearly πn(y − cπs−nx) = 0. Hence y − cπs−nx is a
special representative of ȳ. �

Definition 2.2.3. We shall say elements y1, . . . , yn in M are independent if the yi
are non-zero and

∑n
i=1(yi) =

⊕n
i=1(yi). Equivalently, y1, . . . , yn are independent

if yi 6= 0 for i = 1, . . . , n and any relation of the form
∑n
i=1 aiyi = 0 with ai ∈ A

implies that aiyi = 0 for i = 1, . . . , n.

Note that independence does not mean imply linear independence.

Lemma 2.2.4. If ȳ1, . . . , ȳn ∈M are independent and y1, . . . , yn ∈M are elements
such that each yi (i = 1, . . . , n) is a special representative of ȳi, then x, y1, . . . , yn
are independent.

Proof. Suppose ax + a1y1 + · · · + anyn = 0 for a, ai in A. Then
∑n
i=1 aiȳi = 0.

Since the ȳi are independent, this means aiȳi = 0. But the period of yi is the period
of ȳi for each i, and hence aiyi = 0. In greater detail, suppose πri is the common
period of yi and ȳi. Then aiȳi = 0 implies that πri | ai. It follows that aiyi = 0.
This means ax = 0. Hence x, y1, . . . , yn are independent. �

Lemma 2.2.5. Let k = A/p. Then dimk socp(M) < dimk socp(M).

Proof. Now for any p-torsion module N , elements x1, . . . , xl ∈ socp(N) are inde-
pendent if and only if the are linearly independent over k. Indeed an direct sum

decomposition
∑l
i=1(xi) =

⊕l
i=1(xi) remains valid whether thought of over A or

over k. Let ȳ1, . . . , ȳn ∈ socp(M) be a k-basis for socp(M). Since they are indepen-
dent, by Lemma 2.2.4 x, y1, . . . , yn are independent in M , where the yi are special
representatives of the ȳi. Since the period of ȳi is π for every i, it follows that the
period of yi is π for every i. Hence yi ∈ socp(M) for every M . Now if πr is the
period of x, then πr−1x ∈ socp(M). Moreover, πr−1x, y1, . . . , yn are independent.
Therefore they are linearly independent over k in socp(M). The lemma follows. �

Remark 2.2.6. It is easy to see that if M is cyclic then M ∼= A/ps for some s ≥ 1.
Indeed, suppose M = (x). Then ann(x) = (πs) for some s ≥ 1.

Proposition 2.2.7. M is isomorphic to a direct sum of cyclic modules.
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Proof. This is proved by induction on d(M) = dimk socp(M). The statement is

clearly true if d(M) = 0, for in that case M = 0. If dM = 1, then d(M) = 0, whence
M = 0. This means M = (x). Now suppose d(M) > 1 and the statement of the
proposition is true for all finitely generated p-torsion modules N with d(N) < d(M).

Then by Lemma 2.2.5 and our induction hypothesis, M =
⊕l

i=1(ȳi). If y1, . . . , yn
are representatives of ȳ1, . . . , ȳn respectively, then clearly x, y1, . . . , yn generate M .
If further y1, . . . , yn are special representatives then Lemma 2.2.4 gives us that

M = (x)⊕
⊕l

i=1(yi) and we are done. �

Proposition 2.2.8. Suppose L =
⊕s

i=1(A/pi)li and N =
⊕t

i=1(A/pi)ni are iso-
morphic. Then s = t and and li = ni for i = 1, . . . , s.

Proof. For any finitely generated p-torsion module T , let us define e(T ) to be the
non-negative integer such that (πe(T )) = ann(T ). If T and T ′ are isomorphic,
clearly e(T ) = e(T ′).

Now e(L) = s and e(N) = t. Since L ∼= N therefore s = t. We prove the
proposition by induction on e(L)(= e(N)).

Clearly socp(L) ∼= socp(N). But socp(L) = kl1 and socp(N) = kn1 . Thus
l1 = n1. Now, πL −→∼

⊕s
i=2(A/pi−1)mi and πN −→∼

⊕s
i=2(A/pi−1)ni . Moreover

πL ∼= πN and e(πL) = e(πN) = s− 1. Our induction hypothesis therefore applies,
and we have li = ni for i = 2, . . . , s. �

We are now ready to state the main theorem of this section

Theorem 2.2.9. Let M be as in this subsection, i.e., M is finitely generated and
p-torsion. Let M 6= 0. Then

M ∼=
r⊕
i=1

A/pνi

with 1 ≤ ν1 ≤ ν2 ≤ · · · ≤ νr. The sequence of integers ν1 ≤ · · · ≤ νr is unique.

Proof. This follows immediately from Proposition 2.2.7 and Proposition 2.2.9. �

2.3. Structure theorem for finitely generated torsion modules. In this
subsection M is a finitely generated torsion module. Recall that according to
Proposition 2.1.1 we have a canonical decomposition M =

⊕
p∈S Γp(M). This

decomposition does not need the hypothesis that M is finitely generated. However,
since M is finitely generated, each Γp(M) is finitely generated, and clearly Γp(M)
is p-torsion. Let Supp(M) = {p ∈ S | Γp(M) 6= 0. Since M is finitely generated
Supp(M) is a finite set, say Supp(M) = {p1, . . . , pn}. In fact, if ann(M) = (a), then
Supp(M) = {p ∈ S | a ∈ p}, and this is a finite set, namely the set {(π1), . . . , (πn)}
where πi are the distinct primes occuring in the factorization a = uπr1 . . . πrn with
u a unit and r1, . . . rn positive integers. Theorem 2.2.9 applies to Γp(M) and we
have a sequence of positive integers, depending only on M and p, ν1(p) ≤ · · · ≤ νr(p)
such that Γp(M) ∼=

⊕r(p)
i=1 A/p

νi(p).
We state this as a theorem

Theorem 2.3.1. (Structure theorem for modules over a PID, Version-I) Let M 6=
0 be a finitely generated torsion module over A. Then SuppM is a finite set
{p1, : , pn}, and the canonical decomposition (2.1.1) reduces to a canonical finite
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decomposition M =
⊕n

i=1 Γpi
(M). Let p ∈ Supp(M). Then

(∗)p Γp(M) ∼=
r(p)⊕
i=1

A/pνi(p)

with 1 ≤ ν1(p) ≤ · · · ≤ νr(p)(p). The sequence of integers (ν1(p), . . . , νr(p)(p)) is the
only one which satisfies the properties that a decomposition for Γp(M) of the form
(∗)p exists and the condition 1 ≤ ν1(p) ≤ · · · ≤ νr(p)(p) holds.

Remark 2.3.2. Note that ann(M) = p
νr(p1)(p1)

1 . . . p
νr(pn)(pn)
n .

Theorem 2.3.3. (Structure theorem for modules over a PID, Version-II) Let M 6=
0 be a finitely generated torsion module over A. Then

M ∼= A/(q1)⊕ · · · ⊕A/(ql)

where q1, . . . , ql are non-zero elements of A such that q1 | · · · | ql. The sequence of
ideals (q1), . . . , (qr) is uniquely determined by the above conditions.

Remark: This is often referred to as the Elementary Divisor Theorem and the
essentially unique sequence (q1, . . . , ql are called elementary divisors.

Proof. Consider the decomposition (∗)p in Theorem 2.3.1 for p ∈ Supp(M). Then
We have for such a p an integer r(p). Let l = maxp∈Supp(M) r(p). Now suppose
Supp(M) = {p1, . . . , ps}. For each i ∈ {1, . . . , s} by adding 0’s in front of the
sequence ν1(pi) ≤ · · · ≤ νr(pi)(pi) we have a sequence 0 ≤ νi1 ≤ νi2 ≤ νil, with νil =
νr(pi). The sequence (νi1, . . . , νil) essentially the same as (ν1(pi), . . . , νr(pi)(pi))
except for a few 0’s in front to ensure that the length of the sequence is l and
νil = νr(pi). The data can be arranged as follows:

p1 ←→ ν11 ≤ ν12 ≤ · · · ≤ ν1l(2.3.4)

p2 ←→ ν21 ≤ ν22 ≤ · · · ≤ ν2l
...

...

ps ←→ νs1 ≤ νs2 ≤ · · · ≤ νsl
Let pi = (πi). Define

qj = π
ν1j
1 π

ν2j
2 . . . πνsjs , j = 1, . . . , l.

Then q1 | q2 | · · · | ql and clearly (via the Chinese Remainder Theorem)

M ∼= A/(q1)⊕ · · · ⊕A/(ql)

holds. This proves the existence of a decomposition of M via elementary divisors.
The uniqueness assertion regarding the (qi) in the elementary divisor decompo-

sition of M is proved by observing that arrays such as (2.3.4) are essentially unique.
In greater detail, suppose

p1 ←→ µ11 ≤ µ12 ≤ · · · ≤ µ1d

p2 ←→ µ21 ≤ µ22 ≤ · · · ≤ µ2d

...
...

ps ←→ µs1 ≤ νs2 ≤ · · · ≤ µsd
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is another array of non-negative numbers associated to the pi such that µi1 is
positive for at least one i (i.e., at least one integer in the first column is positive).

Suppose M ∼=
⊕s

i=1

⊕d
j=1A/p

µij

i . Then by Theorem 2.3.1, d = l and µij = νij for
i = 1, . . . , s and j = 1, . . . , l.

Given a direct sum decomposition M ∼= A/(a1) ⊕ · · · ⊕ A/(ad) with a1 | a2 |
· · · | ad (ai ≥ 1), we produce such an array. Note that the minimal ideal occurring
in the elementary divisor decomposition, namely (ad), is ann(M). Thus this ideal
is intrinsic to M . It follows from Remark 2.3.2 that the prime ideals containing
(ad) are precisely p1, . . . , ps, and the prime divisors of ad are precisely π1, . . . , πs
for Supp(M) = {(πi) | i = 1, . . . , s}. Moreover, since aj | ad for all 1 ≤ j ≤
d, therefore the prime divisors of aj are a subset of {π1, . . . , πs} and hence for
each j we have non-negative integers µ1j , . . . , µsj such that aj = uπ

µ1j

1 . . . π
µsj
s .

Moreover, since aj | aj+1, for a fixed i, the sequence (µi1, µi2, . . . , µid) is non-
decreasing. Since (a1) is a non-trivial ideal, at least one µi1 is positive. Finally

clearly, M ∼=
⊕s

i=1

⊕d
j=1A/p

µij

i . Thus d = l, µij = νij for all i ∈ {1, . . . , s} and

all j ∈ {1, . . . , d}, whence (ai) = (qi) for i = 1, . . . , d. �


