NOTES 3

Throughout A is PID.

1. BAsic DEFINITIONS

The set of non-zero prime ideals of A will be denoted S. Thus

S = {p | p is a prime ideal of A and p # 0}.
e If I = (a) is an ideal and M a module, then (as before), we write
T(M) =0T

= {x € M | there exists n > 0 such that a"z = 0}

= hTan> Homa(A/I", M)

o If x € M, the annihilator of x is the ideal

ann(z) = {a € A | az = 0}.

A period of x is a generator of ann(z). Note that periods are unique up to
multiplication by a unit, and we often write “the” period of x instead of “a”
period of . Note that the period of x is non-zero if and only if z € Mg,
and x = 0 if and only if its period is a unit.

The annihilator of M is the ideal

ann(M) = m ann(x).
xeM

An non-zero element of ann(M) is called an exponent of M. Clearly M
has an exponent only if M is a torsion module, i.e., only if M = M;y.. A
sufficient condition for a torsion module M to have an exponent is that M
is finitely generated. This is not necessary however. Indeed let M be an
infinite direct sum of the Z-module Z/pZ where p is a prime number, and
regard this as a Z-module. Then p is an exponent of M, even though M is
not finitely generated.
For a module M and for p € S, define the p-socle of M to be the submodule
socp (M) = Homa(A/p, M). If k(p) = A/p, then soc, (M) is a k(p) vector
space.
For a module M and an element 2 € M, the symbol (z) will denote the
submodule of M generated by x. In other words

(z) = Az.
A module M is said to be cyclic if M = (x) for some x € M.

2. Torsion modules over PIDs

Recall that an A-module is called torsion if Mo, = M.
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2.1. We begin with a general description of torsion A-modules. It can be regarded
as a primary decomposition theorem, except we do not assume M is finitely gener-
ated.

Proposition 2.1.1. Let M be a torsion module. Then

(2.1.1.1) M =EPT,(M).
pes

More precisely, the submodule 3, s 'y(M) of M is an internal direct sum of the
constituent summands.

Remark: Since the decomposition (2.1.1.1) is an internal direct sum, it is a canonical
decompostion.

Proof. Let x € M and let ann (z) = (a). Thena = 7" ... 7" where fori=1,...,1,
m; are distinct prime elements and r; positive integers. By the Chinese Remainder
Theorem, A/(a) == Hli:1 A/(m"). Let e; € A/(a), i = 1,...,1 be the element
corresponding to (0,...,0,1,0...,0) € Hézl A/(m[") where the 1 is in the -th spot
of the l-tuple. Then 22:1 e; = 1 € A/(a). Since Az is an A/(a)-module, we
have x = (e1 + -+ -+ e))xz = 22:1 e;x. Now 7"ie; = 0 by definition of e;. Hence
i@ € Dy (M). Thus z € 37, T'y(M). Hence M =3 o'y (M).

Next suppose p; € S, i =1,...,n, are distinct prime ideals and z; € I'y, (M) are
elements such that 1 +-- -+, = 0. We have to show that x; = 0 for each 7. This
will prove the proposition. Let N be a positive number such that 7¥z; = 0. Such
an N clearly exists. Now ¥ and (mg...7,)" are clearly coprime. Let a and b be
elements of A such that aml¥ + b(my...7,)Y = 1. Then

I = (aw{v + b(ﬂ'g .. .Wn)N).’El
=b(my...mn) Ny

= 71)(71’2 .. .ﬂn)N(IIZQ =+ +$n)
=0.

The same argument shows that x; = 0 for every j. This completes the proof. [

2.2. Finitely generated p-torsion modules. For this subsection. Fix p € S,
say p = (7). A module M is said to be p-torsion if I'y(M) = M. If M is p-torsion
and x € M, then the period of z must be of the form 7% for a suitable £ > 0. In
greater detail, we know that 7"z = 0 for some n > 1. If a is a period of z, then
a | 7, giving the result. In particular if @ € A is such that 7 { a, then the A-map
e M — M given by x — ax is necessarily injective.

Fix a finitely generated p-torsion module M. Since M is finitely generated and
torsion, ann(M) # 0 and hence M has an exponent. Let x € M be an element
such that the period of x is an exponent of M. Since M is finitely generated,
such an z exists. To see this let ann(M) = (a). Then a = urn" for a suitable
non-negative integer n and a unit w. Indeed, suppose a = n"b with = { b. Then
0 = pog = ppourr. However, as we pointed out, up is an injective map, whence
trr = 0, and hence 7" € ann(M). It follows that b is a unit, as claimed. Thus we
may may set a = 7". If r =0, then M = 0 and clearly the period of x = 0 is an
exponent of M. Otherwise, there exists x € M such that 77!z # 0, and clearly
the period of such an x is #n".
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With M and z as above (i.e., M finitely generated and p-torsion, and = € M
such that the period of x is an exponent of M), set

M= M/(z).

Definition 2.2.1. If y € M and y € M is an element mapping to 7 under the
canonical surjection M —» M, then we say that y is a representative of i (or y
represents §). We say y is a special representative of g if the period of y equals the
period of ¥.

Lemma 2.2.2. Let j € M. Then there exists a special representative of 3 in M.

Proof. First pick any representative y of y. Let #" be the period of z. Suppose
7™ is the period of §. Then 7" 1y # 0 (for 7" 1y # 0). Moreover 7"y € (),
say 7"y = bx, b € A. We may write b = ¢m® where 7 { ¢. Then 7"y = cn®z. If
s > r, then ™y = 0 and hence n™ is a period of y, i.e., y is a special representative
of §. Otherwise, s < r and #"T" =%y = 0, and in fact 7°" =% is a period of y. It
follows that n +r — s < r since r is an exponent of M. Hence s —n > 0. Now
y — cm® "z represents § and clearly 7"(y — e¢r® "a) = 0. Hence y — cn® "z is a
special representative of . ([

Definition 2.2.3. We shall say elements y1,...,y, in M are independent if the y;
are non-zero and > ., (y;) = @;_,(v;). Equivalently, y1,...,y, are independent
if y; # 0 for i = 1,...,n and any relation of the form Z?:l a;y; = 0 with a; € A
implies that a;y; =0fori=1,...,n.

Note that independence does not mean imply linear independence.

Lemma 2.2.4. If§1,...,9Y, € M are independent and y1, . ..,y, € M are elements
such that each y; (i =1,...,n) is a special representative of y;, then x,y1,...,Yn
are independent.

Proof. Suppose ax + a1y1 + -+ + apy, = 0 for a, a; in A. Then Z?Zl a;y; = 0.
Since the ; are independent, this means a;y; = 0. But the period of y; is the period
of g; for each i, and hence a;y; = 0. In greater detail, suppose 7" is the common
period of y; and y;. Then a;y; = 0 implies that "¢ | a,;. It follows that a;y; = 0.
This means ax = 0. Hence z,y1, . ..,y, are independent. O

Lemma 2.2.5. Let k = A/p. Then dimy soc, (M) < dimy soc, (M).

Proof. Now for any p-torsion module N, elements z1,...,z; € socy(NN) are inde-
pendent if and only if the are linearly independent over k. Indeed an direct sum
decomposition Zi:1(3¢z) = @221(%) remains valid whether thought of over A or
over k. Let 1, ..., Jn € socy(M) be a k-basis for soc,(M). Since they are indepen-
dent, by Lemma 2.2.4 x,y1,...,y, are independent in M, where the y; are special
representatives of the ;. Since the period of y; is 7w for every i, it follows that the
period of y; is m for every i. Hence y; € soc,(M) for every M. Now if 7" is the
period of z, then 7" 'z € soc,(M). Moreover, 7" Yz, y1,...,y, are independent.
Therefore they are linearly independent over k in soc,(A). The lemma follows. O

Remark 2.2.6. It is easy to see that if M is cyclic then M = A/p® for some s > 1.
Indeed, suppose M = (z). Then ann(z) = (7%) for some s > 1.

Proposition 2.2.7. M is isomorphic to a direct sum of cyclic modules.
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Proof. This is proved by induction on d(M) = dimy socy(M). The statement is
clearly true if d(M) = 0, for in that case M = 0. If dj; = 1, then d(M) = 0, whence
M = 0. This means M = (z). Now suppose d(M) > 1 and the statement of the
proposition is true for all finitely generated p-torsion modules N with d(N) < d(M).

Then by Lemma 2.2.5 and our induction hypothesis, M = @izl(gi). Ky, yn

are representatives of 41, ..., §, respectively, then clearly z,y1,...,y, generate M.
If further yi,...,y, are special representatives then Lemma 2.2.4 gives us that
M= (z)® @ézl(yi) and we are done. O

Proposition 2.2.8. Suppose L = @°_,(A/p") and N = @!_,(A/p")™ are iso-
morphic. Then s =1t and and l; =n; fori=1,...,s.

Proof. For any finitely generated p-torsion module 7', let us define e(T") to be the
non-negative integer such that (7¢(*)) = ann(T). If T and T’ are isomorphic,
clearly e(T) = e(T").

Now e(L) = s and e(N) = t. Since L = N therefore s = t. We prove the
proposition by induction on e(L)(= e(N)).

Clearly socy(L) = socy(N). But socp(L) = k' and socy(N) = k™. Thus
li =ni. Now, 7L == @; ,(A/p"~H)™ and nN = @;_,(A/p*~!)". Moreover
7L =2 7N and e(rL) = e(nN) = s — 1. Our induction hypothesis therefore applies,
and we have [; = n; for i =2, ... s. |

We are now ready to state the main theorem of this section

Theorem 2.2.9. Let M be as in this subsection, i.e., M 1is finitely generated and
p-torsion. Let M # 0. Then

M=h A/
i=1

with 1 < vy <wvy < --- <w,.. The sequence of integers vy < --- < v, is unique.

Proof. This follows immediately from Proposition 2.2.7 and Proposition 2.2.9. O

2.3. Structure theorem for finitely generated torsion modules. In this
subsection M is a finitely generated torsion module. Recall that according to
Proposition 2.1.1 we have a canonical decomposition M = P, q'p(M). This
decomposition does not need the hypothesis that M is finitely generated. However,
since M is finitely generated, each I'y (M) is finitely generated, and clearly T', (M)
is p-torsion. Let Supp(M) = {p € S| I'y(M) # 0. Since M is finitely generated
Supp(M) is a finite set, say Supp(M) = {p1,...,pn}. Infact, if ann(M) = (a), then
Supp(M) = {p € S| a € p}, and this is a finite set, namely the set {(m1),..., (mn)}
where m; are the distinct primes occuring in the factorization a = un™ ... 7" with
w a unit and 71,...r, positive integers. Theorem 2.2.9 applies to I'y(M) and we
have a sequence of positive integers, depending only on M and p, v1(p) < -

such that T'p(M) 22 @7 A/pvi®).

We state this as a theorem

S Vr(p)

Theorem 2.3.1. (Structure theorem for modules over a PID, Version-I) Let M #
0 be a finitely generated torsion module over A. Then SuppM is a finite set
{p1,: ,pn}, and the canonical decomposition (2.1.1) reduces to a canonical finite
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decomposition M = @) _, Ty, (M). Let p € Supp(M). Then

r(p)
()p Ty(M) =P A/ ®
i=1

with 1 < vi(p) < -+ < vp(p)(p). The sequence of integers (vi(p), ..., Vppy(p)) is the
only one which satisfies the properties that a decomposition for I'y(M) of the form
(%)p exists and the condition 1 < vi(p) < -+ < vp(py(p) holds.

Remark 2.3.2. Note that ann(M) = plr("l)(pl) . .pzr(p")(p").

Theorem 2.3.3. (Structure theorem for modules over a PID, Version-II) Let M #
0 be a finitely generated torsion module over A. Then

M=A/(q)®-- DA/ (q)

where qi,...,q are non-zero elements of A such that ¢ | --- | q;. The sequence of
ideals (q1), ..., (qr) is uniquely determined by the above conditions.

Remark: This is often referred to as the Elementary Divisor Theorem and the
essentially unique sequence (g1, ..., q are called elementary divisors.

Proof. Consider the decomposition (x), in Theorem 2.3.1 for p € Supp(M). Then
We have for such a p an integer (p). Let | = maxyegupp(ar) 7(p). Now suppose
Supp(M) = {p1,...,ps}. For each i € {1,...,s} by adding 0’s in front of the
sequence v1(p;) < -+ < VUp(p,)(Ps) we have a sequence 0 < vy < vi2 < vy, with vy =
Vrp;)- The sequence (vj1,...,v5) essentially the same as (v1(pq), ..., Vr(p,) (i)
except for a few 0’s in front to ensure that the length of the sequence is [ and
Vil = Vp(p,)- The data can be arranged as follows:

(2.3.4) pre— v Svp <Ly
P2 1o Swpp < oo Sy

ps < Va1 Svsa < <y
Let p; = (m;). Define
qj =m O my L wh ji=1,...,L
Then q1 | g2 | --- | ¢ and clearly (via the Chinese Remainder Theorem)

M=A/(q)@-&A/(q)

holds. This proves the existence of a decomposition of M via elementary divisors.

The uniqueness assertion regarding the (¢;) in the elementary divisor decompo-
sition of M is proved by observing that arrays such as (2.3.4) are essentially unique.
In greater detail, suppose

pre—rpn Spe << g
P2 — o1 < pog <o < pag
ps<—>/1431§1/52§"'§ﬂsd
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is another array of non-negative numbers associated to the p; such that p;; is
positive for at least one 4 (i.e., at least one integer in the first column is positive).
Suppose M = @;_, @?21 A/p%". Then by Theorem 2.3.1, d =1 and p;; = v;; for
i=1,....,sand j=1,...,L

Given a direct sum decomposition M = A/(ay) @ --- & A/(aq) with a1 | as |
-+ | aq (a; > 1), we produce such an array. Note that the minimal ideal occurring
in the elementary divisor decomposition, namely (aq), is ann(M). Thus this ideal
is intrinsic to M. It follows from Remark 2.3.2 that the prime ideals containing
(aq) are precisely p1,...,ps, and the prime divisors of ag are precisely m1,...,ms
for Supp(M) = {(m;) | i = 1,...,s}. Moreover, since a; | aq for all 1 < j <
d, therefore the prime divisors of a; are a subset of {m,..., 7} and hence for
each j we have non-negative integers p1;,...,us; such that a; = umr)™ ... 75,
Moreover, since a; | a;jy1, for a fixed 4, the sequence (pi1, iz, - -, thiq) is non-
decreasing. Since (a1) is a non-trivial ideal, at least one p;; is positive. Finally
clearly, M =~ @;_, @?21 A/pt. Thus d =1, pij = v for all i € {1,...,s} and
all j € {1,...,d}, whence (a;) = (¢;) fori=1,...,d. O



