Throughout A is PID.

1. Basic Definitions

The set of *non-zero* prime ideals of A will be denoted S. Thus

 $S = \{ \mathfrak{p} \mid \mathfrak{p} \text{ is a prime ideal of } A \text{ and } \mathfrak{p} \neq 0 \}.$

• If I = (a) is an ideal and M a module, then (as before), we write

$$\begin{split} \Gamma_I(M) &= \underset{M}{0:I} \\ &= \{ x \in M \mid \text{there exists } n \geq 0 \text{ such that } a^n x = 0 \} \\ &= \varinjlim \operatorname{Hom}_A(A/I^n, M) \end{split}$$

• If $x \in M$, the annihilator of x is the ideal

$$\operatorname{ann}(x) = \{ a \in A \mid ax = 0 \}.$$

A period of x is a generator of $\operatorname{ann}(x)$. Note that periods are unique up to multiplication by a unit, and we often write "the" period of x instead of "a" period of x. Note that the period of x is non-zero if and only if $x \in M_{\text{tor}}$, and x = 0 if and only if its period is a unit.

• The annihilator of M is the ideal

$$\operatorname{ann}(M) = \bigcap_{x \in M} \operatorname{ann}(x).$$

An non-zero element of $\operatorname{ann}(M)$ is called an *exponent* of M. Clearly M has an exponent only if M is a torsion module, i.e., only if $M = M_{\operatorname{tor}}$. A sufficient condition for a torsion module M to have an exponent is that M is finitely generated. This is not necessary however. Indeed let M be an infinite direct sum of the \mathbb{Z} -module $\mathbb{Z}/p\mathbb{Z}$ where p is a prime number, and regard this as a \mathbb{Z} -module. Then p is an exponent of M, even though M is not finitely generated.

- For a module M and for $\mathfrak{p} \in S$, define the \mathfrak{p} -socle of M to be the submodule $\operatorname{soc}_{\mathfrak{p}}(M) = \operatorname{Hom}_{A}(A/\mathfrak{p}, M)$. If $\kappa(\mathfrak{p}) = A/\mathfrak{p}$, then $\operatorname{soc}_{\mathfrak{p}}(M)$ is a $\kappa(\mathfrak{p})$ vector space.
- For a module M and an element $x \in M$, the symbol (x) will denote the submodule of M generated by x. In other words

$$(x) = Ax$$

A module M is said to be *cyclic* if M = (x) for some $x \in M$.

2. Torsion modules over PIDs

Recall that an A-module is called *torsion* if $M_{tor} = M$.

Date: September 1, 2015.

2.1. We begin with a general description of torsion A-modules. It can be regarded as a primary decomposition theorem, except we do not assume M is finitely generated.

Proposition 2.1.1. Let M be a torsion module. Then

(2.1.1.1)
$$M = \bigoplus_{\mathfrak{p} \in S} \Gamma_{\mathfrak{p}}(M).$$

More precisely, the submodule $\sum_{\mathfrak{p}\in S}\Gamma_{\mathfrak{p}}(M)$ of M is an internal direct sum of the constituent summands.

Remark: Since the decomposition (2.1.1.1) is an internal direct sum, it is a canonical decomposition.

Proof. Let $x \in M$ and let $\operatorname{ann}(x) = (a)$. Then $a = \pi^{r_1} \dots \pi_l^{r_l}$ where for $i = 1, \dots, l$, π_i are distinct prime elements and r_i positive integers. By the Chinese Remainder Theorem, $A/(a) \xrightarrow{\sim} \prod_{i=1}^l A/(\pi_i^{r_i})$. Let $e_i \in A/(a)$, $i = 1, \dots, l$ be the element corresponding to $(0, \dots, 0, 1, 0, \dots, 0) \in \prod_{i=1}^l A/(\pi_i^{r_i})$ where the 1 is in the *i*-th spot of the *l*-tuple. Then $\sum_{i=1}^l e_i = 1 \in A/(a)$. Since Ax is an A/(a)-module, we have $x = (e_1 + \dots + e_l)x = \sum_{i=1}^l e_i x$. Now $\pi^{r_i}e_i = 0$ by definition of e_i . Hence $e_i x \in \Gamma_{(\pi_i)}(M)$. Thus $x \in \sum_{\mathfrak{p} \in S} \Gamma_{\mathfrak{p}}(M)$.

Next suppose $\mathfrak{p}_i \in S$, $i = 1, \ldots, n$, are distinct prime ideals and $x_i \in \Gamma_{\mathfrak{p}_i}(M)$ are elements such that $x_1 + \cdots + x_n = 0$. We have to show that $x_i = 0$ for each *i*. This will prove the proposition. Let *N* be a positive number such that $\pi_i^N x_i = 0$. Such an *N* clearly exists. Now π_1^N and $(\pi_2 \ldots \pi_n)^N$ are clearly coprime. Let *a* and *b* be elements of *A* such that $a\pi_1^N + b(\pi_2 \ldots \pi_n)^N = 1$. Then

$$x_{1} = (a\pi_{1}^{N} + b(\pi_{2}\dots\pi_{n})^{N})x_{1}$$

= $b(\pi_{2}\dots\pi_{n})^{N}x_{1}$
= $-b(\pi_{2}\dots\pi_{n})^{N}(x_{2}+\dots+x_{n})$
= $0.$

The same argument shows that $x_j = 0$ for every j. This completes the proof. \Box

2.2. Finitely generated p-torsion modules. For this subsection. Fix $\mathfrak{p} \in S$, say $\mathfrak{p} = (\pi)$. A module M is said to be \mathfrak{p} -torsion if $\Gamma_{\mathfrak{p}}(M) = M$. If M is \mathfrak{p} -torsion and $x \in M$, then the period of x must be of the form π^k for a suitable $k \ge 0$. In greater detail, we know that $\pi^n x = 0$ for some $n \ge 1$. If a is a period of x, then $a \mid \pi^n$, giving the result. In particular if $a \in A$ is such that $\pi \nmid a$, then the A-map $\mu_a \colon M \to M$ given by $x \mapsto ax$ is necessarily injective.

Fix a finitely generated \mathfrak{p} -torsion module M. Since M is finitely generated and torsion, $\operatorname{ann}(M) \neq 0$ and hence M has an exponent. Let $x \in M$ be an element such that the period of x is an exponent of M. Since M is finitely generated, such an x exists. To see this let $\operatorname{ann}(M) = (a)$. Then $a = u\pi^r$ for a suitable non-negative integer n and a unit u. Indeed, suppose $a = \pi^r b$ with $\pi \nmid b$. Then $0 = \mu_a = \mu_b \circ \mu_{\pi^r}$. However, as we pointed out, μ_b is an injective map, whence $\mu_{\pi^r} = 0$, and hence $\pi^r \in \operatorname{ann}(M)$. It follows that b is a unit, as claimed. Thus we may may set $a = \pi^r$. If r = 0, then M = 0 and clearly the period of x = 0 is an exponent of M. Otherwise, there exists $x \in M$ such that $\pi^{r-1}x \neq 0$, and clearly the period of such an x is π^r .

With M and x as above (i.e., M finitely generated and \mathfrak{p} -torsion, and $x \in M$ such that the period of x is an exponent of M), set

$$\overline{M} := M/(x).$$

Definition 2.2.1. If $\bar{y} \in \overline{M}$ and $y \in M$ is an element mapping to \bar{y} under the canonical surjection $M \twoheadrightarrow \overline{M}$, then we say that y is a *representative* of \bar{y} (or y represents \bar{y}). We say y is a special representative of \bar{y} if the period of y equals the period of \bar{y} .

Lemma 2.2.2. Let $\bar{y} \in \overline{M}$. Then there exists a special representative of \bar{y} in M.

Proof. First pick any representative y of \bar{y} . Let π^r be the period of x. Suppose π^n is the period of \bar{y} . Then $\pi^{n-1}y \neq 0$ (for $\pi^{n-1}\bar{y} \neq 0$). Moreover $\pi^n y \in (x)$, say $\pi^n y = bx$, $b \in A$. We may write $b = c\pi^s$ where $\pi \nmid c$. Then $\pi^n y = c\pi^s x$. If $s \geq r$, then $\pi^n y = 0$ and hence π^n is a period of y, i.e., y is a special representative of \bar{y} . Otherwise, s < r and $\pi^{n+r-s}y = 0$, and in fact π^{n+r-s} is a period of y. It follows that $n + r - s \leq r$ since r is an exponent of M. Hence $s - n \geq 0$. Now $y - c\pi^{s-n}x$ represents \bar{y} and clearly $\pi^n(y - c\pi^{s-n}x) = 0$. Hence $y - c\pi^{s-n}x$ is a special representative of \bar{y} .

Definition 2.2.3. We shall say elements y_1, \ldots, y_n in M are *independent* if the y_i are non-zero and $\sum_{i=1}^n (y_i) = \bigoplus_{i=1}^n (y_i)$. Equivalently, y_1, \ldots, y_n are independent if $y_i \neq 0$ for $i = 1, \ldots, n$ and any relation of the form $\sum_{i=1}^n a_i y_i = 0$ with $a_i \in A$ implies that $a_i y_i = 0$ for $i = 1, \ldots, n$.

Note that independence does not mean imply linear independence.

Lemma 2.2.4. If $\bar{y}_1, \ldots, \bar{y}_n \in \overline{M}$ are independent and $y_1, \ldots, y_n \in M$ are elements such that each y_i $(i = 1, \ldots, n)$ is a special representative of \bar{y}_i , then x, y_1, \ldots, y_n are independent.

Proof. Suppose $ax + a_1y_1 + \cdots + a_ny_n = 0$ for a, a_i in A. Then $\sum_{i=1}^n a_i\bar{y}_i = 0$. Since the \bar{y}_i are independent, this means $a_i\bar{y}_i = 0$. But the period of y_i is the period of \bar{y}_i for each i, and hence $a_iy_i = 0$. In greater detail, suppose π^{r_i} is the common period of y_i and \bar{y}_i . Then $a_i\bar{y}_i = 0$ implies that $\pi^{r_i} \mid a_i$. It follows that $a_iy_i = 0$. This means ax = 0. Hence x, y_1, \ldots, y_n are independent.

Lemma 2.2.5. Let $k = A/\mathfrak{p}$. Then $\dim_k \operatorname{soc}_{\mathfrak{p}}(\overline{M}) < \dim_k \operatorname{soc}_{\mathfrak{p}}(M)$.

Proof. Now for any p-torsion module N, elements $x_1, \ldots, x_l \in \operatorname{soc}_p(N)$ are independent if and only if the are linearly independent over k. Indeed an direct sum decomposition $\sum_{i=1}^{l} (x_i) = \bigoplus_{i=1}^{l} (x_i)$ remains valid whether thought of over A or over k. Let $\bar{y}_1, \ldots, \bar{y}_n \in \operatorname{soc}_p(\overline{M})$ be a k-basis for $\operatorname{soc}_p(\overline{M})$. Since they are independent, by Lemma 2.2.4 x, y_1, \ldots, y_n are independent in M, where the y_i are special representatives of the \bar{y}_i . Since the period of \bar{y}_i is π for every i. Hence $y_i \in \operatorname{soc}_p(M)$ for every M. Now if π^r is the period of x, then $\pi^{r-1}x \in \operatorname{soc}_p(M)$. Moreover, $\pi^{r-1}x, y_1, \ldots, y_n$ are independent. Therefore they are linearly independent over k in $\operatorname{soc}_p(M)$. The lemma follows. \Box

Remark 2.2.6. It is easy to see that if M is cyclic then $M \cong A/\mathfrak{p}^s$ for some $s \ge 1$. Indeed, suppose M = (x). Then $\operatorname{ann}(x) = (\pi^s)$ for some $s \ge 1$.

Proposition 2.2.7. *M* is isomorphic to a direct sum of cyclic modules.

Proof. This is proved by induction on $d(M) = \dim_k \operatorname{soc}_{\mathfrak{p}}(M)$. The statement is clearly true if d(M) = 0, for in that case M = 0. If $d_M = 1$, then $d(\overline{M}) = 0$, whence $\overline{M} = 0$. This means M = (x). Now suppose d(M) > 1 and the statement of the proposition is true for all finitely generated \mathfrak{p} -torsion modules N with d(N) < d(M). Then by Lemma 2.2.5 and our induction hypothesis, $\overline{M} = \bigoplus_{i=1}^{l} (\bar{y}_i)$. If y_1, \ldots, y_n are representatives of $\bar{y}_1, \ldots, \bar{y}_n$ respectively, then clearly x, y_1, \ldots, y_n generate M. If further y_1, \ldots, y_n are special representatives then Lemma 2.2.4 gives us that $M = (x) \oplus \bigoplus_{i=1}^{l} (y_i)$ and we are done. \Box

Proposition 2.2.8. Suppose $L = \bigoplus_{i=1}^{s} (A/\mathfrak{p}^i)^{l_i}$ and $N = \bigoplus_{i=1}^{t} (A/\mathfrak{p}^i)^{n_i}$ are isomorphic. Then s = t and and $l_i = n_i$ for $i = 1, \ldots, s$.

Proof. For any finitely generated **p**-torsion module T, let us define e(T) to be the non-negative integer such that $(\pi^{e(T)}) = \operatorname{ann}(T)$. If T and T' are isomorphic, clearly e(T) = e(T').

Now e(L) = s and e(N) = t. Since $L \cong N$ therefore s = t. We prove the proposition by induction on e(L)(=e(N)).

Clearly $\operatorname{soc}_{\mathfrak{p}}(L) \cong \operatorname{soc}_{\mathfrak{p}}(N)$. But $\operatorname{soc}_{\mathfrak{p}}(L) = k^{l_1}$ and $\operatorname{soc}_{\mathfrak{p}}(N) = k^{n_1}$. Thus $l_1 = n_1$. Now, $\pi L \xrightarrow{\sim} \bigoplus_{i=2}^s (A/\mathfrak{p}^{i-1})^{m_i}$ and $\pi N \xrightarrow{\sim} \bigoplus_{i=2}^s (A/\mathfrak{p}^{i-1})^{n_i}$. Moreover $\pi L \cong \pi N$ and $e(\pi L) = e(\pi N) = s - 1$. Our induction hypothesis therefore applies, and we have $l_i = n_i$ for $i = 2, \ldots, s$.

We are now ready to state the main theorem of this section

Theorem 2.2.9. Let M be as in this subsection, i.e., M is finitely generated and \mathfrak{p} -torsion. Let $M \neq 0$. Then

$$M \cong \bigoplus_{i=1}^r A/\mathfrak{p}^\nu$$

with $1 \leq \nu_1 \leq \nu_2 \leq \cdots \leq \nu_r$. The sequence of integers $\nu_1 \leq \cdots \leq \nu_r$ is unique.

Proof. This follows immediately from Proposition 2.2.7 and Proposition 2.2.9. \Box

2.3. Structure theorem for finitely generated torsion modules. In this subsection M is a finitely generated torsion module. Recall that according to Proposition 2.1.1 we have a canonical decomposition $M = \bigoplus_{\mathfrak{p} \in S} \Gamma_{\mathfrak{p}}(M)$. This decomposition does not need the hypothesis that M is finitely generated. However, since M is finitely generated, each $\Gamma_{\mathfrak{p}}(M)$ is finitely generated, and clearly $\Gamma_{\mathfrak{p}}(M)$ is \mathfrak{p} -torsion. Let $\operatorname{Supp}(M) = \{\mathfrak{p} \in S \mid \Gamma_{\mathfrak{p}}(M) \neq 0$. Since M is finitely generated $\operatorname{Supp}(M)$ is a finite set, say $\operatorname{Supp}(M) = \{\mathfrak{p} \in S \mid n_1, \ldots, \mathfrak{p}_n\}$. In fact, if $\operatorname{ann}(M) = (a)$, then $\operatorname{Supp}(M) = \{\mathfrak{p} \in S \mid a \in \mathfrak{p}\}$, and this is a finite set, namely the set $\{(\pi_1), \ldots, (\pi_n)\}$ where π_i are the distinct primes occuring in the factorization $a = u\pi^{r_1} \ldots \pi^{r_n}$ with u a unit and r_1, \ldots, r_n positive integers. Theorem 2.2.9 applies to $\Gamma_{\mathfrak{p}}(M)$ and we have a sequence of positive integers, depending only on M and $\mathfrak{p}, \nu_1(\mathfrak{p}) \leq \cdots \leq \nu_{r(\mathfrak{p})}$ such that $\Gamma_{\mathfrak{p}}(M) \cong \bigoplus_{i=1}^{r(\mathfrak{p})} A/\mathfrak{p}^{\nu_i(\mathfrak{p})}$.

We state this as a theorem

Theorem 2.3.1. (Structure theorem for modules over a PID, Version-I) Let $M \neq 0$ be a finitely generated torsion module over A. Then SuppM is a finite set $\{\mathfrak{p}_1, :, \mathfrak{p}_n\}$, and the canonical decomposition (2.1.1) reduces to a canonical finite

decomposition $M = \bigoplus_{i=1}^{n} \Gamma_{\mathfrak{p}_{i}}(M)$. Let $\mathfrak{p} \in \operatorname{Supp}(M)$. Then

$$(*)_{\mathfrak{p}} \qquad \qquad \Gamma_{\mathfrak{p}}(M) \cong \bigoplus_{i=1}^{r(\mathfrak{p})} A/\mathfrak{p}^{\nu_i(\mathfrak{p})}$$

with $1 \leq \nu_1(\mathfrak{p}) \leq \cdots \leq \nu_{r(\mathfrak{p})}(\mathfrak{p})$. The sequence of integers $(\nu_1(\mathfrak{p}), \ldots, \nu_{r(\mathfrak{p})}(\mathfrak{p}))$ is the only one which satisfies the properties that a decomposition for $\Gamma_{\mathfrak{p}}(M)$ of the form $(*)_{\mathfrak{p}}$ exists and the condition $1 \leq \nu_1(\mathfrak{p}) \leq \cdots \leq \nu_{r(\mathfrak{p})}(\mathfrak{p})$ holds.

Remark 2.3.2. Note that $\operatorname{ann}(M) = \mathfrak{p}_1^{\nu_{r(\mathfrak{p}_1)}(\mathfrak{p}_1)} \dots \mathfrak{p}_n^{\nu_{r(\mathfrak{p}_n)}(\mathfrak{p}_n)}$.

Theorem 2.3.3. (Structure theorem for modules over a PID, Version-II) Let $M \neq 0$ be a finitely generated torsion module over A. Then

$$M \cong A/(q_1) \oplus \cdots \oplus A/(q_l)$$

where q_1, \ldots, q_l are non-zero elements of A such that $q_1 | \cdots | q_l$. The sequence of ideals $(q_1), \ldots, (q_r)$ is uniquely determined by the above conditions.

Remark: This is often referred to as the *Elementary Divisor Theorem* and the essentially unique sequence (q_1, \ldots, q_l) are called elementary divisors.

Proof. Consider the decomposition $(*)_{\mathfrak{p}}$ in Theorem 2.3.1 for $\mathfrak{p} \in \operatorname{Supp}(M)$. Then We have for such a \mathfrak{p} an integer $r(\mathfrak{p})$. Let $l = \max_{\mathfrak{p} \in \operatorname{Supp}(M)} r(\mathfrak{p})$. Now suppose $\operatorname{Supp}(M) = {\mathfrak{p}_1, \ldots, \mathfrak{p}_s}$. For each $i \in {1, \ldots, s}$ by adding 0's in front of the sequence $\nu_1(\mathfrak{p}_i) \leq \cdots \leq \nu_{r(\mathfrak{p}_i)}(\mathfrak{p}_i)$ we have a sequence $0 \leq \nu_{i1} \leq \nu_{i2} \leq \nu_{il}$, with $\nu_{il} = \nu_{r(\mathfrak{p}_i)}$. The sequence $(\nu_{i1}, \ldots, \nu_{il})$ essentially the same as $(\nu_1(\mathfrak{p}_i), \ldots, \nu_{r(\mathfrak{p}_i)}(\mathfrak{p}_i))$ except for a few 0's in front to ensure that the length of the sequence is l and $\nu_{il} = \nu_{r(\mathfrak{p}_i)}$. The data can be arranged as follows:

$$(2.3.4) \qquad \qquad \mathfrak{p}_1 \longleftrightarrow \nu_{11} \le \nu_{12} \le \cdots \le \nu_{1l} \\ \mathfrak{p}_2 \longleftrightarrow \nu_{21} \le \nu_{22} \le \cdots \le \nu_{2l} \\ \vdots \qquad \vdots \\ \mathfrak{p}_s \longleftrightarrow \nu_{s1} \le \nu_{s2} \le \cdots \le \nu_{sl}$$

Let $\mathfrak{p}_i = (\pi_i)$. Define

$$q_j = \pi_1^{\nu_{1j}} \pi_2^{\nu_{2j}} \dots \pi_s^{\nu_{sj}}, \qquad j = 1, \dots, l$$

Then $q_1 \mid q_2 \mid \cdots \mid q_l$ and clearly (via the Chinese Remainder Theorem)

$$M \cong A/(q_1) \oplus \cdots \oplus A/(q_l)$$

holds. This proves the existence of a decomposition of M via elementary divisors.

The uniqueness assertion regarding the (q_i) in the elementary divisor decomposition of M is proved by observing that arrays such as (2.3.4) are essentially unique. In greater detail, suppose

$$\mathfrak{p}_1 \longleftrightarrow \mu_{11} \le \mu_{12} \le \cdots \le \mu_{1d}$$

$$\mathfrak{p}_2 \longleftrightarrow \mu_{21} \le \mu_{22} \le \cdots \le \mu_{2d}$$

$$\vdots \qquad \vdots \qquad \vdots \\
 \mathfrak{p}_s \longleftrightarrow \mu_{s1} \le \nu_{s2} \le \cdots \le \mu_{sd}$$

is another array of non-negative numbers associated to the \mathfrak{p}_i such that μ_{i1} is positive for at least one *i* (i.e., at least one integer in the first column is positive). Suppose $M \cong \bigoplus_{i=1}^{s} \bigoplus_{j=1}^{d} A/\mathfrak{p}_i^{\mu_{ij}}$. Then by Theorem 2.3.1, d = l and $\mu_{ij} = \nu_{ij}$ for $i = 1, \ldots, s$ and $j = 1, \ldots, l$.

Given a direct sum decomposition $M \cong A/(a_1) \oplus \cdots \oplus A/(a_d)$ with $a_1 \mid a_2 \mid \cdots \mid a_d \ (a_i \ge 1)$, we produce such an array. Note that the minimal ideal occurring in the elementary divisor decomposition, namely (a_d) , is $\operatorname{ann}(M)$. Thus this ideal is intrinsic to M. It follows from Remark 2.3.2 that the prime ideals containing (a_d) are precisely $\mathfrak{p}_1, \ldots, \mathfrak{p}_s$, and the prime divisors of a_d are precisely π_1, \ldots, π_s for $\operatorname{Supp}(M) = \{(\pi_i) \mid i = 1, \ldots, s\}$. Moreover, since $a_j \mid a_d$ for all $1 \le j \le d$, therefore the prime divisors of a_j are a subset of $\{\pi_1, \ldots, \pi_s\}$ and hence for each j we have non-negative integers $\mu_{1j}, \ldots, \mu_{sj}$ such that $a_j = u\pi_1^{\mu_{1j}} \ldots \pi_s^{\mu_{sj}}$. Moreover, since $a_j \mid a_{j+1}$, for a fixed i, the sequence $(\mu_{i1}, \mu_{i2}, \ldots, \mu_{id})$ is nondecreasing. Since (a_1) is a non-trivial ideal, at least one μ_{i1} is positive. Finally clearly, $M \cong \bigoplus_{i=1}^s \bigoplus_{j=1}^d A/\mathfrak{p}_i^{\mu_{ij}}$. Thus $d = l, \ \mu_{ij} = \nu_{ij}$ for all $i \in \{1, \ldots, s\}$ and all $j \in \{1, \ldots, d\}$, whence $(a_i) = (q_i)$ for $i = 1, \ldots, d$.