NOTES 2

Throughout A is a ring. As usual "maps" mean A-module homomorphisms.

Direct Systems and Direct Limits

Definitions. A partially ordered set (Λ, \prec) is said to be a *directed set* if given a pair of elements λ_1 and λ_2 in Λ , there exists $\lambda \in \Lambda$ such that $\lambda_i \prec \lambda$ for i = 1, 2. Given a directed set (Λ, \prec) , a *direct system* of A-modules is a family of modules $(M_{\lambda})_{\lambda \in \Lambda}$ together with A-maps $\mu_{\lambda,\lambda'} \colon M_{\lambda'} \to M_{\lambda}$, one for every pair of elements $(\lambda', \lambda) \in \Lambda \times \Lambda$ with $\lambda' \prec \lambda$, such that $\mu_{\lambda,\lambda} = \mathbf{1}_{M_{\lambda}}$, and if $\lambda'' \prec \lambda' \prec \lambda$ then $\mu_{\lambda,\lambda'} \circ \mu_{\lambda',\lambda''} = \mu_{\lambda,\lambda''}$.

If $(M_{\lambda}, \mu_{\lambda,\lambda'})$ is direct system, then the *direct limit* of this direct system is a module M, together with maps $\mu_{\lambda} \colon M_{\lambda} \to M$, one for each $\lambda \in \Lambda$, satisfying $\mu_{\lambda} \circ \mu_{\lambda,\lambda'} = \mu_{\lambda'}$ for $\lambda' \prec \lambda$ and such that if we have a family of A-maps $\nu_{\lambda} \colon M_{\lambda} \to N$, $\lambda \in \Lambda$, where N is an A-module, then there exists a unique A-map $\nu \colon M \to N$ such that $\nu \circ \mu_{\lambda} = \nu_{\lambda}, \lambda \in \Lambda$. If M^* is another A-module with this property, i.e., if we have A-maps $\mu_{\lambda}^* \colon M_{\lambda}M^*, \lambda \in \Lambda$ satisfying $\mu_{\lambda}^* \circ \mu_{\lambda,\lambda'} = \mu_{\lambda'}^*, \lambda' \prec \lambda$, and such that if (N, ν_{λ}) is as above, there is a unique map $\nu^* \colon M^* \to N$ satisfying $\nu^* \circ \mu_{\lambda}^* = \nu_{\lambda}, \lambda \in \Lambda$, then clearly we have a unique isomorphism $\varphi \colon M \longrightarrow M^*$ such that $\mu_{\lambda}^* = \varphi \circ \mu_{\lambda}, \lambda \in \Lambda$. To see this, first note that by the universal property of Mwe have a unique map $\varphi \colon M \to M^*$ satisfying $\mu_{\lambda}^* = \varphi \circ \mu_{\lambda}, \lambda \in \Lambda$. Similarly we have a unique map $\psi \colon M^* \to M$ satisfying $\mu_{\lambda} = \psi \circ \mu_{\lambda}^*, \lambda \in \Lambda$. Then $\theta = \psi \circ \varphi \colon M \to M$ satisfies $\mu_{\lambda} = \theta \circ \mu_{\lambda}, \lambda \in \Lambda$. By the uniqueness of such a θ , it follows that $\theta = \mathbf{1}_M$. Similarly $\varphi \circ \psi = \mathbf{1}_{M^*}$. Hence direct limits are *unique up to unique isomorphisms*.

If M is the direct limit of (M_{λ}) , we write

$$M = \varinjlim_{\lambda} M_{\lambda}$$

Schematically, a direct system $(M_{\lambda}, \mu_{\lambda,\lambda'})$ is represented by commutative diagrams (one for every triple of indices $\lambda'' \prec \lambda' \prec \lambda$)

Similarly, if $(\nu_{\lambda} \colon M_{\lambda} \to N)$ is a family of maps satisfying $\nu_{\lambda}\mu_{\lambda,\lambda'} = \nu_{\lambda'}$, then for each λ' the following diagram commutes

and ν is the only map with this property.

Date: August 19, 2015.

NOTES 2

Cofinal systems. Let (Λ, \prec) be a directed set. A sub-directed set $\Gamma \subset \Lambda$ is said to be *cofinal* with respect to Λ , if given $\lambda \in \Lambda$ there exists a $\gamma \in \Gamma$ with $\lambda \prec \gamma$. In what follows we fix a directed set Λ and a cofinal subset Γ of Λ .

Maps of direct systems. Let (Λ, \prec) be a directed set. If $(M_{\lambda})_{\lambda \in \Lambda}$ and $(N_{\lambda})_{\lambda \in \Lambda}$ are direct systems of A-modules, then $\operatorname{Hom}_{\Lambda}((M_{\lambda}), (N_{\lambda}))$ is the group of maps between direct systems, i.e., an element of the above set is a collection of maps $(\varphi_{\lambda} \colon M_{\lambda} \to N_{\lambda})$ compatible with the direct system structures on (M_{λ}) and (N_{λ}) . Every module T will be regarded as a direct system, namely as the constant direct system. Thus the symbol $\operatorname{Hom}_{\Lambda}((M_{\lambda}), T)$ makes sense. In particular, by definition of a direct limit

$$\operatorname{Hom}_{\Lambda}((M_{\lambda}), T) \xrightarrow{\sim} \operatorname{Hom}_{A}(\lim_{\overline{\lambda \in \Lambda}} M_{\lambda}, T)$$

for every A-module T.

Existence. Suppose (M_{λ}) is a direct system of A-modules. There are two constructions (at least) of $\lim_{\to} M_{\lambda}$. In the first construction, consider the set

$$X = \coprod_{\lambda \in \Lambda} M_{\lambda}$$

which is the *disjoint union* of the M_{λ} . Note that given $x \in X$, it lies in a unique M_{λ} and let us denote the index λ where this occurs by $\lambda(x)$. Next define an equivalence relation "~" on X as follows. If x and y are elements of X, we say $x \sim y$ if there exists an index λ such that $\lambda(x) \prec \lambda$ and $\lambda(y) \prec \lambda$ and $\mu_{\lambda,\lambda(x)}(x) = \mu_{\lambda,\lambda(y)}(y)$. One checks that this gives an equivalence relation on X. Set

$$\varinjlim M_{\lambda} = X/\!\!\sim .$$

One checks that X/\sim has the structure of an A-module given by $[x] + [y] = [\mu_{\lambda,\lambda(x)}(x) + \mu_{\lambda,\lambda(y)}(y)]$ where λ is an index greater than or equal both $\lambda(x)$ as well as $\lambda(y)$ ([z] denoting the equivalence class of $z \in X$), for $[x], [y] \in X/\sim$, and a[x] = [ax] for $[x] \in X/\sim$.

The second construction is as follows. Let

$$\widetilde{M} = \bigoplus_{\lambda \in \Lambda} M_{\lambda}$$

For $x \in \widetilde{M}$, let the support of x be the set

$$\operatorname{Supp}(x) = \{\lambda \in \Lambda \mid \pi_{\lambda}(x) \neq 0\}$$

where $\pi_{\lambda} \colon \widetilde{M} \to M_{\lambda}$ is the projection map. Let $\lambda^* \in \Lambda$. We say $\operatorname{Supp}(x) \prec \lambda^*$ if $\lambda \prec \lambda^*$ for every $\lambda \in \operatorname{Supp}(x)$. Since $\operatorname{Supp}(x)$ is finite (by definition of a direct sum), such a λ^* always exists. Let K be the submodule of \widetilde{M} given by

$$K = \{ x \in \widetilde{M} \mid \exists \lambda^* \succ \operatorname{Supp}(x) \text{ such that } \sum_{\lambda \in \operatorname{Supp}(x)} \mu_{\lambda^*,\lambda} \pi_{\lambda}(x) = 0 \}.$$

 Set

$$\lim_{\xrightarrow{\lambda}} M_{\lambda} = \widetilde{M}/K.$$

NOTES 2

Localisation

Let A be a commutative rung, M an A-module, and $S \subset A$ a subset which is multiplicatively closed. This means $1 \in S$ and $st \in S$ whenever s and t are in S. The module *localisation of* M at S is the set of equivalence classes of pairs $(x,s) \in M \times S$ where (x,s) and (y,t) are related if there exists $a \in S$ such that a(tx - sy) = 0. Once writes x/s or $\frac{x}{s}$ for the equivalence class of (x,s). S^1M can be made into a module by defining addition and scalar multiplication by the rules:

$$\frac{x}{s} + \frac{y}{t} = \frac{tx + sy}{st}$$

and

$$a(\frac{x}{s}) = \frac{ax}{s}.$$

One checks that these operations are well defined. Since A is itself an A-module, $S^{1}A$ makes sense. It is easy to see that $S^{-1}A$ is a commutative ring under the obvious product (namely, (a/s)(b/t) = (ab)/(st)) and one checks easily that $S^{-1}M$ is an $S^{-1}A$ -module.

If $t \in A$ and $S = \{1, t, t^2, ...\}$, then it is traditional to write M_t instead of $S^{-1}M$.

Let $q: A \to S^{-1}S$ be the "localisation map" $a \mapsto a/1$. Then q is a ring homomorphism. The localisation map generalises to the module M and gives us an A-module map $q_M: M \to S^{-1}M$ given by $m \mapsto m/1$.

The localisation $S^{-1}A$ has the following universal property. If $f: A \to B$ is a ring homomorphism (between commutative rings) and f(s) is a unit in B for every $s \in S$, then there exists a unique map $f': S^1A \to B$ such that $f' \circ q = f$. In fact the map f' is $a/s \mapsto f(s)^{-1}f(a)$. Similarly, if $\varphi: M \to N$ is an A-module map such that the maps $\mu_s: \varphi(N) \to \varphi(N), s \in S$, given by $\mu_s(x) = sx$, are all (bijective) isomorphisms, then there exists a unique map $\varphi': S^{-1}M \to N$ such that $\varphi = \varphi' \circ q_M$.

It is not hard to see that $S^{-1}M \xrightarrow{\sim} (S^{-1}A) \otimes_A M$. We usually write $S^{-1}M = (S^{-1}A) \otimes_A M$.

If $t \in A$, then one sees from the universal properties of localisation that $A_t = A[X]/(1-tX)$, and similarly $M_t = M[X]/(1-tX)M[X]$, where $M[X] := A[X] \otimes_A M$.