
NOTES 2

Throughout A is a ring. As usual “maps” mean A-module homomorphisms.

Direct Systems and Direct Limits

Definitions. A partially ordered set (Λ,≺) is said to be a directed set if given a
pair of elements λ1 and λ2 in Λ, there exists λ ∈ Λ such that λi ≺ λ for i = 1, 2.
Given a directed set (Λ,≺), a direct system of A-modules is a family of modules
(Mλ)λ∈Λ together with A-maps µλ,λ′ : Mλ′ → Mλ, one for every pair of elements
(λ′, λ) ∈ Λ × Λ with λ′ ≺ λ, such that µλ,λ = 1Mλ

, and if λ′′ ≺ λ′ ≺ λ then
µλ,λ′ ◦µλ′,λ′′ = µλ,λ′′ .

If (Mλ, µλ,λ′) is direct system, then the direct limit of this direct system is a
module M , together with maps µλ : Mλ → M , one for each λ ∈ Λ, satisfying
µλ ◦µλ,λ′ = µλ′ for λ′ ≺ λ and such that if we have a family ofA-maps νλ : Mλ → N ,
λ ∈ Λ, where N is an A-module, then there exists a unique A-map ν : M → N
such that ν ◦µλ = νλ, λ ∈ Λ. If M∗ is another A-module with this property,
i.e., if we have A-maps µ∗λ : MλM

∗, λ ∈ Λ satisfying µ∗λ ◦µλ,λ′ = µ∗λ′ , λ
′ ≺ λ,

and such that if (N, νλ) is as above, there is a unique map ν∗ : M∗ → N satisfying
ν∗ ◦µ∗λ = νλ, λ ∈ Λ, then clearly we have a unique isomorphism ϕ : M −→∼ M∗ such
that µ∗λ = ϕ ◦µλ, λ ∈ Λ. To see this, first note that by the universal property of M
we have a unique map ϕ : M →M∗ satisfying µ∗λ = ϕ ◦µλ, λ ∈ Λ. Similarly we have
a unique map ψ : M∗ →M satisfying µλ = ψ ◦µ∗λ, λ ∈ Λ. Then θ = ψ ◦ϕ : M →M
satisfies µλ = θ ◦µλ, λ ∈ Λ. By the uniqueness of such a θ, it follows that θ = 1M .
Similarly ϕ ◦ψ = 1M∗ . Hence direct limits are unique up to unique isomorphisms.

If M is the direct limit of (Mλ), we write

M = lim−−→
λ

Mλ.

Schematically, a direct system (Mλ, µλ,λ′) is represented by commutative dia-
grams (one for every triple of indices λ′′ ≺ λ′ ≺ λ)

Mλ′′

µλ,λ′′

""EE
EE

EE
EE

µλ′,λ′′

��
Mλ′ µλ,λ′

// Mλ

Similarly, if (νλ : Mλ → N) is a family of maps satisfying νλµλ,λ′ = νλ′ , then for
each λ′ the following diagram commutes

Mλ′

νλ′

""EEEEEEEEE

µλ′

��
lim−−→
λ

Mλ
ν

// N

and ν is the only map with this property.
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2 NOTES 2

Cofinal systems. Let (Λ,≺) be a directed set. A sub-directed set Γ ⊂ Λ is said
to be cofinal with respect to Λ, if given λ ∈ Λ there exists a γ ∈ Γ with λ ≺ γ. In
what follows we fix a directed set Λ and a cofinal subset Γ of Λ.

Maps of direct systems. Let (Λ,≺) be a directed set. If (Mλ)λ∈Λ and (Nλ)λ∈Λ

are direct systems of A-modules, then HomΛ((Mλ), (Nλ)) is the group of maps
between direct systems, i.e., an element of the above set is a collection of maps
(ϕλ : Mλ → Nλ) compatible with the direct system structures on (Mλ) and (Nλ).
Every module T will be regarded as a direct system, namely as the constant direct
system. Thus the symbol HomΛ((Mλ), T ) makes sense. In particular, by definition
of a direct limit

HomΛ((Mλ), T ) −→∼ HomA(lim−−→
λ∈Λ

Mλ, T )

for every A-module T .

Existence. Suppose (Mλ) is a direct system of A-modules. There are two constr-
cuctions (at least) of lim−−→

λ

Mλ. In the first construction, consider the set

X =
∐
λ∈Λ

Mλ

which is the disjoint union of the Mλ. Note that given x ∈ X, it lies in a unique Mλ

and let us denote the index λ where this occurs by λ(x). Next define an equivalence
relation “∼” on X as follows. If x and y are elements of X, we say x ∼ y if there
exists an index λ such that λ(x) ≺ λ and λ(y) ≺ λ and µλ,λ(x)(x) = µλ,λ(y)(y).
One checks that this gives an equivalence relation on X. Set

lim−−→
λ

Mλ = X/∼ .

One checks that X/∼ has the structure of an A-module given by [x] + [y] =
[µλ,λ(x)(x) + µλ,λ(y)(y)] where λ is an index greater than or equal both λ(x) as
well as λ(y) ([z] denoting the equivalence class of z ∈ X), for [x], [y] ∈ X/∼, and
a[x] = [ax] for [x] ∈ X/∼.

The second construction is as follows. Let

M̃ =
⊕
λ∈Λ

Mλ.

For x ∈ M̃ , let the support of x be the set

Supp (x) = {λ ∈ Λ | πλ(x) 6= 0}

where πλ : M̃ → Mλ is the projection map. Let λ∗ ∈ Λ. We say Supp (x) ≺ λ∗ if
λ ≺ λ∗ for every λ ∈ Supp (x). Since Supp (x) is finite (by definition of a direct
sum), such a λ∗ always exists. Let K be the submodule of M̃ given by

K = {x ∈ M̃ | ∃ λ∗ � Supp (x) such that
∑

λ∈Supp (x)

µλ∗,λπλ(x) = 0}.

Set
lim−−→
λ

Mλ = M̃/K.
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Localisation

Let A be a commutative rung, M an A-module, and S ⊂ A a subset which is
multiplicatively closed. This means 1 ∈ S and st ∈ S whenever s and t are in
S. The module localisation of M at S is the set of equivalence classes of pairs
(x, s) ∈ M × S where (x, s) and (y, t) are related if there exists a ∈ S such that
a(tx− sy) = 0. Once writes x/s or x

s for the equivalence class of (x, s). S1M can
be made into a module by defining addition and scalar multiplication by the rules:

x

s
+
y

t
=
tx+ sy

st
and

a(
x

s
) =

ax

s
.

One checks that these operations are well defined. Since A is itself an A-module,
S1A makes sense. It is easy to see that S−1A is a commutative ring under the
obvious product (namely, (a/s)(b/t) = (ab)/(st)) and one checks easily that S−1M
is an S−1A-module.

If t ∈ A and S = {1, t, t2, . . . }, then it is traditional to write Mt instead of
S−1M .

Let q : A → S−1S be the “localisation map” a 7→ a/1. Then q is a ring ho-
momorphism. The localisation map generalises to the module M and gives us an
A-module map qM : M → S−1M given by m 7→ m/1.

The localisation S−1A has the following universal property. If f : A → B is a
ring homomorphism (between commutative rings) and f(s) is a unit in B for every
s ∈ S, then there exists a unique map f ′ : S1A → B such that f ′ ◦ q = f . In
fact the map f ′ is a/s 7→ f(s)−1f(a). Similarly, if ϕ : M → N is an A-module
map such that the maps µs : ϕ(N) → ϕ(N), s ∈ S, given by µs(x) = sx, are all
(bijective) isomorphisms, then there exists a unique map ϕ′ : S−1M → N such that
ϕ = ϕ′ ◦ qM .

It is not hard to see that S−1M −→∼ (S−1A)⊗AM . We usually write S−1M =
(S−1A)⊗AM .

If t ∈ A, then one sees from the universal properties of localisation that At =
A[X]/(1− tX), and similarly Mt = M [X]/(1− tX)M [X], where M [X] := A[X]⊗A
M .


