NOTES 2

Throughout A is a ring. As usual “maps” mean A-module homomorphisms.

Direct Systems and Direct Limits

Definitions. A partially ordered set (A, <) is said to be a directed set if given a
pair of elements A\; and Ay in A, there exists A € A such that A\; < A for i = 1,2.
Given a directed set (A, <), a direct system of A-modules is a family of modules
(Mx)xea together with A-maps px v : My — My, one for every pair of elements
(M, A) € A x A with X < A, such that pxx = 1a,, and if A7 < X < X then
KX A0 [N N7 = X A\

If (My, pa,n) is direct system, then the direct limit of this direct system is a
module M, together with maps uy: My — M, one for each A € A, satisfying
pao pan = pa for A < X\ and such that if we have a family of A-maps vy: My — N,
A € A, where N is an A-module, then there exists a unique A-map v: M — N
such that vouy = vy, A € A. If M* is another A-module with this property,
i.e., if we have A-maps p}: MyM*, A € A satisfying plopx v = p3, N < A
and such that if (N, vy) is as above, there is a unique map v*: M* — N satisfying
v*opu} = vy, A € A, then clearly we have a unique isomorphism ¢: M -~ M™* such
that p3 = @opux, A € A. To see this, first note that by the universal property of M
we have a unique map ¢: M — M* satisfying u} = @oux, A € A. Similarly we have
a unique map ¢ : M* — M satisfying puy =Y opu3, A€ A. Then§ =op: M — M
satisfies puy = 0oy, A € A. By the uniqueness of such a @, it follows that § = 1,,.
Similarly @o1 = 1,/+. Hence direct limits are unique up to unique isomorphisms.

If M is the direct limit of (M), we write

M:@MA.
X

Schematically, a direct system (M, pa,n) is represented by commutative dia-
grams (one for every triple of indices A’ < X' < \)

My

l Y\//
IRV

M)\/ ﬁ M)\
AN

Similarly, if (vx: My — N) is a family of maps satisfying vapx x = vy, then for
each X the following diagram commutes

My,
AN
Hxr
lim My —»
BN v
and v is the only map with this property.
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2 NOTES 2

Cofinal systems. Let (A, <) be a directed set. A sub-directed set I' C A is said
to be cofinal with respect to A, if given A € A there exists a v € T with A < ~. In
what follows we fix a directed set A and a cofinal subset I of A.

Maps of direct systems. Let (A, <) be a directed set. If (My)xea and (Ny)aea
are direct systems of A-modules, then Homp ((M)), (Ny)) is the group of maps
between direct systems, i.e., an element of the above set is a collection of maps
(pa: My — N,) compatible with the direct system structures on (My) and (Ny).
Every module T will be regarded as a direct system, namely as the constant direct
system. Thus the symbol Homp ((M)),T) makes sense. In particular, by definition
of a direct limit
HomA((M,\), T) - HOmA(h_Hl) M)\, T)
AEA

for every A-module T.

Existence. Suppose (M,) is a direct system of A-modules. There are two constr-
cuctions (at least) of lim M. In the first construction, consider the set
A

X:]_[MA

AEA

which is the disjoint union of the M. Note that given x € X it lies in a unique M
and let us denote the index X\ where this occurs by A\(x). Next define an equivalence
relation “~” on X as follows. If x and y are elements of X, we say x ~ y if there
exists an index A such that A(z) < A and A(y) < X and py a@)(2) = paa@) (V)
One checks that this gives an equivalence relation on X. Set

lim M) = X/~ .
A

One checks that X/~ has the structure of an A-module given by [z] + [y] =
[ a@) () + fiaa(y)(y)] where A is an index greater than or equal both () as
well as A(y) ([z] denoting the equivalence class of z € X), for [z],[y] € X/~, and
alx] = [ax] for [z] € X/~.

The second construction is as follows. Let

M =P M,

For z € ]\A/f, let the support of x be the set
Supp () = {A € A | mx(x) # 0}

where ) : M — M, is the projection map. Let A\* € A. We say Supp (z) < A\* if
A < A* for every A € Supp (x). Since Supp () is finite (by definition of a direct
sum), such a A\* always exists. Let K be the submodule of M given by

K={ze M | 3 A" > Supp («) such that Z pas ama(z) = 0}.
AESupp (z)

Set
lim My = M/K.
A
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Localisation

Let A be a commutative rung, M an A-module, and S C A a subset which is
multiplicatively closed. This means 1 € S and st € S whenever s and ¢ are in
S. The module localisation of M at S is the set of equivalence classes of pairs
(x,8) € M x S where (z,s) and (y,t) are related if there exists a € S such that
a(tx — sy) = 0. Once writes /s or £ for the equivalence class of (x,s). S'M can
be made into a module by defining addition and scalar multiplication by the rules:

x Yy tr+sy

S t st
and . .
a(g) = S

One checks that these operations are well defined. Since A is itself an A-module,
S1 A makes sense. It is easy to see that S™!A is a commutative ring under the
obvious product (namely, (a/s)(b/t) = (ab)/(st)) and one checks easily that S~ M
is an S~!A-module.

If t € Aand S = {1,t,#%,...}, then it is traditional to write M; instead of
S—1M.

Let g: A — S~1S be the “localisation map” a +— a/1. Then ¢ is a ring ho-
momorphism. The localisation map generalises to the module M and gives us an
A-module map qpr: M — S™M given by m — m/1.

The localisation S~!'A has the following universal property. If f: A — B is a
ring homomorphism (between commutative rings) and f(s) is a unit in B for every
s € S, then there exists a unique map f’: S'A — B such that f'oqg = f. In
fact the map f’ is a/s — f(s)"1f(a). Similarly, if p: M — N is an A-module
map such that the maps pg: (V) — @(N), s € S, given by us(z) = sz, are all
(bijective) isomorphisms, then there exists a unique map ¢’: S~'M — N such that
=g oqum.

It is not hard to see that S™1M —= (S71A)®4 M. We usually write S~1M =
(S_IA) ®a M.

If t € A, then one sees from the universal properties of localisation that A; =
A[X]/(1—tX), and similarly M; = M[X]/(1 —tX)M|[X], where M[X]:= A[X]|®4
M.



