
INJECTIVES AND DERIVED CATEGORIES

Summary of things done

Main Theorems. Let A be an abelian category and C(A ) the category of com-
plexes of objects in A . We regard every object A of A as a complex with A in the
0th spot and 0 in all other spots of the complex. It is clear that a map A → A′

in A can be regarded as a map in C(A ). Thus we have a functor ı : A ↪→ C(A )
which is an embedding.

The main results we proved were:

Theorem 1. Suppose A is an abelian category with enough injectives, A, B objects

in A , A
c−→ C• a resolution of A and B

b−→ I• a map of complexes and ψ : A → B
a map in A . Then there is a map ϕ : C• → I•, unique up to homotopy, which
lifts ψ, i.e., there is a homotopy unique map ϕ : C• → I• such that the diagram of
complexes

A

ψ

��

c // C•

ϕ

��
B

b
// I•

commutes.

Theorem 2 (The Horseshoe Lemma). Let

0→ A→ B → C → 0

be an exact sequence in an abelian category A with enough injectives. If α : A→ I•A
and γ : C → I•C are injective resolutions, then we can find an injective resolution
β : B → J• such that we have a commutative diagram in C(A) with exact rows:

0 // I•A // J• // I•C // 0

0 // A

α

OO

// B

β

OO

// C

γ

OO

// 0

Injective resolution functor. Let A be an abelian category. Define K(A ) to be
the category whose objects are complexes of objects from A , and whose morphisms
are homotopy equivalance classes of maps in C(A). The embedding ı : A → C(A )
mentioned above, clearly descends to K(A ) and we denote this functor also by ı,
and it too is an embedding. Thus we have

A ↪→ K(A ).

Suppose A has enough injectives. If one picks an injective resolution ϕ(A) : A →
λ(A) for each A ∈ A (λ(A) ∈ K(A ), then according to Theorem 1, a map A →
A′ lifts uniquely to a map λ(A) → λ(A′) in K(A ), and again by Theorem 1, a
composite A→ A′ → A′′ gives rise to a corresponding composite λ(A)→ λ(A′)→
λ(A′′) in K(A ). Thus we have:
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• A functor λ : A → K(A ) taking values in injective complexes (in fact
bounded below injective complexes), and
• a map of functors

ϕ : ı→ λ

such that for each A ∈ A , ϕ(A) is an injective resolution.

Definition 1. A pair (λ, ϕ) is said to be an injective resolution functor it has the
above two properties.

Theorem 1 (yet again!) gives us (for an abelian category with enough injectives):

Theorem 3. Two injective resolution functors are unique up to unique isomor-
phism. In greater detail, if (λ, ϕ) and (λ′ ϕ′) are two injective resolution functors,
then there is a unique isomorphism ψ : λ −→∼ λ′ such that the diagram

ı

ϕ

��

ı

ϕ′

��
λ

ψ̃
// λ′

commutes.

Derived functors. Now suppose A and B are abelian categories, A with enough
injectives, and T : A → B an additive functor. Since T is additive, it respects
homotopies and hence we have a functor (also denoted T ) T : K(A ) → K(B)
given by C• 7→ T (C•). Pick an injective resolution functor (λ, ϕ). For each i ∈ Z
define the ith right derived functor of T to be the additive functor RiT : A → B
given by the formula

RiT := Hi(T ◦λ).

It is immediate from Theorem 3 that RiT is independent (up to unique isomor-
phism) of the chosen injective resolution functor. We will not belabour this point,
and will from now on take a naive attitude towards computing derived functors.
The Horsehoe Lemma then gives

Theorem 4. Given a short exact sequence

0→ A
f−→ B

g−→ C → 0

in A , we have a long exact sequence

· · · → Ri−1T (C)
δ−→ RiT (A)

RiT (f)−−−−−→ RiT (B)
RiT (g)−−−−→ RiT (C)

δ−→ Ri+1T (A)→ . . .

and the “connecting maps” δ are natural transformations.

The last statement (on the naturality of δ) is easy to prove, once one examines
the behaviour of the Horshoe Lemma when one varies the short exact sequence in
A . I made the right statement in class.

More on Derived Functors

Let T : A → B be an additive functor between abelian categories with A having
enough injectives.

1) If T is left exact then T 0 = T .
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2) If A is an injective object, then RiTA = 0 for i ≥ 1. Indeed we can pick λ(A)
to be A, i.e., we can work with the injective resolution 1A : A → A of A. Then
applying T and taking cohomology, the assertion follows.

3) A collection of additive functors {Si}i≥0 from A → B is said to be a δ-functor
if it transforms a short exact sequence as in the previous Theorem to a long exact
sequence

· · · → Si−1(C) δ−→ Si(A)
Si(f)−−−→ Si(B)

Si(g)−−−→ Si(C)
δ−→ Si+1(A)→ . . .

in a functorial manner, i.e. the above assignment should be a functor from the
category of short exact sequences in A to the category of long exact sequences
in B. We don’t need A to have enough injectives to make this definition. The
Theorem then says that {RiT} is a δ-functor. Note that if {Si} is a δ-functor, then
S0 is necessarily left exact.

4) In fact {RiT} is a universal δ-functor. This means that given a δ-functor
{Si} and a natural transformation T → S0, there are unique maps RiT → Si i ≥ 0
giving a map of δ-functors. Indeed, given an object A ∈ A , pick an embedding
A ↪→ I of A into an injective object I. Let C = coker (A→ I). Now consider
the commutative diagram of solid arrows (arising from the natural transformation
T → S0) and exact rows:

0 // TA

��

// TI

��

// TC //

��

R1TA //

��

0

0 // S0A // S0I // S0C // S1A //

The top row is exact on the right because R1TI = 0, I being injective. Thus
R1TA = coker (TI → TC). By definition of a cokernal, we have a unique map
which fills the dotted arrow to make the whole diagram commute. I leave it to
you to show (a) the map R1TA → S1A so defined is independent of I; (b) that
it actually defines a functorial map; and (c) if 0 → A → B → C → 0 is an exact
sequence then the required diagram between the two δ-functors commutes up to
level 1.

Now proceed by induction to finish the proof—if Ri → Si has been defined for
i ≤ k in such a way that for a short exact sequence of objects in A , we have a map
up to levek k of the corresponding long exact sequences of the two δ-functors as
required. Since RiTI = 0 for i ≥ 1, we have an isomorphism RkTC −→∼ Rk+1TA.
One then defines Rk+1TA → Sk+1A as the unique map which makes the diagram
below commute:

RkTC

��

˜ // Rk+1TA

��
SkC // Sk+1A

Once again, one checks that this map Rk+1A → Sk+1A is independent of I and
defines a natural transformation Rk+1 → Sk+1 with the required properties.

5) We can dualize and talk about left derived functors Li of additive functors
when A has enough projectives. In greater detail, if A has enough projectives
(it may or may not have enough injectives), we can get a projective resolution
functor (τ, ϕ) with τ : A → K(A ) a functor and ϕ : τ → ı a natural transformation
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such that for each A ∈ A ϕ(A) : τ(A) → ı(A) = A is a projective resolution. If
T : A → B is additive we can define

LiT = H−i(T ◦ τ).

Again, a suitable definition of δ-functors can be made, which are negatively indexed
or else, have their indices as subscripts rather than superscripts as in {LiT} and
these are also universal δ-functors. I leave it to you to formulate the universal
property. If {Si}i≥0 is a “homology” δ-functor, your definition should imply that
S0 is necessarily right exact.

6) There is obvious way of talking about right derived functors of contravariant
additive functors using projective resolutions, if the category has enough projec-
tives. Similarly, one can talk about left derived functors of contravariant functors
using injectives. I leave these details to you. Again, if T is left exact and con-
travariant, then R0T = T , and if it is right exact, L0 = T .

Examples of derived functors

The bifunctor TorAi (−, ?). Let A be a ring, andM an A-module. If T := −⊗AM ,
then for every i

(*) TorAi (−, M) := LiT.

Clearly if F is a flat A-module, then for every A-module D,

(**) TorAi (D, F ) = 0 i ≥ 1.

Recall that a flat module D is a module such that (−)⊗AD is an exact functor.
Suppose D = D′⊕D′′. Then (−)⊗AD = (−)⊗′A⊕(−)⊗AD′′ and hence (−)⊗AD′
and (−)⊗A D′′ are exact if and only if (−)⊗A D is. In other words, every direct
summand of a flat module is flat.

Since projective modules are direct summands of free modules, and free modules
are clearly flat, therefore, projective modules are flat. Using this we showed in class
that

(***) TorAi (M, N) = TorAi (N, M).

Using (*), (**), and (***), we see that

TorAi (F, M) = 0 i ≥ 1

for all A-modules M . In particular, if

0→ U → V → F → 0

is an exact sequence of A-modules with F a flat A-modules, then

0→ U ⊗AM → V ⊗AM → F ⊗AM → 0

is exact for every A-module M .

The bifunctor ExtiA(−, ?). Let M and N be A-modules (A as above). Tem-
porarily denote the ith right derived functors of the two functors HomA(M, −) and
HomA(−, N) by ExtiA(M, −) and extiA(−, N) respectively. From class, we have

ExtiA(M N) −→∼ extiA(M, N)

for every M and N and every i. In fact this is a bifunctorial isomorphism, as is
easy to check. We identify the two δ-functors, and the notation ExtiA(M, N) is the
preferred one.
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Cohomology of sheaves. LetX be a topological space, and T = Γ(X, −) : S hX →
Ab the global sections functor, Ab being the category of abelian groups. Then for
every i, RiT is denoted Hi(X−). For a sheaf F , the group

Hi(X, F )

is called the ith cohomology group of the sheaf F .

Ext groups in an abelian category A . There is yet another notion of the Ext
groups. Let A be an abelian category, and A, B two objects in A . We set

Ext0A (A, B) := HomA (A, B).

For i ≥ 1, ExtiA (A, B) is the set of equivalence classes of exact sequences

(†) 0→ B → D1 → · · · → Di → A→ 0.

We set D0 = B and Di+1 = A. Note that the sequence begins at B and ends
at A! Two such sequences D• and E• are considered equivalent if there is an
isomorphism of complexes ϕ : D• −→∼ E• with ϕ0 = 1B and ϕi+1 = 1A. If A has
enough projectives, then one cab show that ExtiA (A, B) is computed by taking
a projective resolution P • → A of A, and then calculating the cohomology of
Hom•A (P •, B). In other words, in this case ExtiA (−, B) is the derived functor of
HomA (−, B). Similarly, if A has enough injectives, ExtiA (A, −) is the derived
functor of HomA (A, −). In the event A has both enough injectives and enough
projectives, then by the technique used in class, clearly the last two definitions
of ExtiA (A, B) coincide and are groups. If any of the latter two are defined then
they agree with the definition involving exact sequences. To give some idea of how
the process works, suppose A has enough injectives. Let B → I• be an injective
resolution of B. Since (†) is an exact sequence it gives rise to a resolution of B, and
hence we have a map of complexes, unique up to homotopy, f : C• → I• where C•

is
0→ D1 → · · · → Di → Di+1 → 0

with D1 in the zeroth spot (so Ci = Di+1 for i ≥ 0, and Ci = 0 for i < 0). We
thus have a map f i : A → Ii. This gives an element of Homi

A (A, I•). One checks
it is a co-cycle (i.e., it is in the kernel of the coboundary map of Hom•A (A, I•)) and
hence gives an element in the ith cohomology of Hom•A (A, I•). The reverse process
is more difficult to describe, and we won’t do it now.

The Abstract DeRham’s Theorem

Throughout this section T : A → B is an additive functor, with A possessing
enough injectives.

Definition 2. An object A of A is said to be T -acyclic if RiT (A) = 0 for i ≥ 1.

Lemma 1. Suppose T is left exact and N• a bounded below complex of T -acyclic
objects in A . Then the complex T (N•) of objects in B is exact.

Proof. It is enough to prove the statement under the assumption that N i = 0 for
i < 0. Let C = coker (N0 → N1). The exact sequence

0→ N0 → N1 → C → 0

gives rise to a long exact sequence involving RiT (N0), RiT (N1) and RiT (C).
Since N0 and N1 are T -acyclic, it follows easily from this long exact sequence
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that RiT (C) = 0 for i ≥ 1, whence C is also T -acyclic. A similar argument also
shows that the sequence

(*) 0→ T (N0)→ T (N1)→ T (C)→ 0

is exact, for R1T (N0) = 0. Let R• be the complex with Ri = 0, i < 1, Ri = N i

for i ≥ 2, and R1 = C. The R• is a bounded below complex of T -acyclics, and R•

“begins” from degree 1. Moreover R• is exact. Let P • be the complex 0→ N0
1N0−−→

N0 → 0 with the two copies of N0 placed in the 0th and 1st places. Then P • is also
an exact complex of T -acyclics. We have a short exact sequence of complexes

0→ P • → N• → R• → 0

which is perhaps better understood if displayed as the commutative diagram with
exact rows and exact columns below:

...
...

...

0 // 0 //

OO

Np = //

OO

Np //

OO

0

...

OO

...

OO

...

OO

0 // 0 //

OO

N2 = //

OO

N2 //

OO

0

0 // N0

OO

// N1 //

OO

C

OO

// 0

0 // N0 = // N0

OO

// 0

OO

// 0

0

OO

0

OO

0

OO

P • N• R•

One checks easily that for every i, the sequence

(†) 0→ T (P i)→ T (N i)→ T (Ri)→ 0

is exact. The only i which needs to be looked at carefully is i = 1, and here (*)
does the trick. By (†), we have an exact sequence of complexes

0→ T (P •)→ T (N•)→ T (R•)→ 0.

Since T (P •) is clearly exact (identity morphisms are transformed to identity mor-
phisms by functors), it follows that

(‡) Hi(T (N•)) −→∼ Hi(T (R•))
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for every i. In particular, H0(T (N•)) = 0, something we can also deduce from the
left exactness of T .

Fix n. Suppose Hi(T (K•)) = 0 for all i ≤ n and all K• which are exact,
consisting of T -acyclics, and such that Ki = 0 for i < 0. Then using standard
properties of cohomologies of translations of complexes we have:

Hn+1(T (R•)) = Hn(T (R•[1]))

= 0

for, R•[1] satisfies the hypotheses on K• above. Applying this to (‡) with i = n+1,
we see that Hn+1(T (N•)) = 0. �

Definition 3. A resolution A → F • of an object A in A is called a T -acyclic
resolution if every F i is T -acyclic.

Remarks 1. An injective resolution is always a T -acyclic resolution, since injec-
tives are T - acyclic for every additive functor T .

The following theorem can be viewed as an abstract form of DeRham’s theorem.

Theorem 5. Suppose T is left exact and we have a T -acyclic resolution A → F •

of an object A of A . Then for every integer i we have a canonical isomorphism

Hi(T (F •)) −→∼ RiT (A).

In greater detail, let A→ I• be an injective resolution of A and

ϕ : F • → I•

the homotopy unique map of complexes lifting the identity map on A. Then for
every integer i map

Hi(T (ϕ)) : Hi(T (F •))→ Hi(T (I•)) =: RiT (A)

is an isomorphism.

Proof. Let ϕ : F • → I• be as in the statement of the theorem. Then ϕ is a quasi-
isomorphism. The mapping cone C•ϕ of ϕ is therefore exact and certainly bounded

below. Since Ciϕ = F i⊕ Ii+1, it is evident that Ciϕ is T -acyclic. Since T is additive
we obviously have

T (C•ϕ) = C•T (ϕ).

By the previous lemma, the left side of the above is exact, whence so is the right
side. We are clearly done. �

Here is an obvious generalisation of the above:

Theorem 6. Let ψ : D• → E• be a quasi-isomorphism of bounded below T -acyclic
complexes. Then T (ψ) : T (D•)→ T (E•) is a quasi-isomorphism.

Proof. Same as the proof of the previous theorem. �
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