
NOTES 1

Throughout, A is a ring. Here are some basic facts, notations, and defintions
that will help you in understand the HW problems.

Basic notions

1) For an element a ∈ A, the centralizer of a, denoted C(a) is the set of elements
in A which commute with a, i.e.,

C(a) := {x ∈ A | ax = xa}.
For a subset S of A, we define the centralizer C(S) of S to be the subset of A given
by

C(S) :=
⋂
a∈S

C(a).

2) If a is an ideal of A, and M is an A-module, then aM is defined to be the
submodule generated by the set {ax | a ∈ a, x ∈M}. Note that from what we saw
in class, this means

aM = {a1x1 + · · ·+ anxn | ai ∈ a, xi ∈M, i = 1, . . . , n}.
3) Let M be an A-module and x an element of M . We have a natural surjective

map µx : A→ Ax given by a 7→ ax. The annhilator of x, denoted ann(x) is defined
as the kernel of µx. Note that ann(x) is a left ideal and that

ann(x) = {a ∈ A | ax = 0}.
Note that x ∈Mtor if and only if ann(x) 6= 0. Equivalently, x /∈Mtor if and only if
ann(x) = 0. We have an isomorphism

A/ann(x) −→∼ Ax.

Direct sums and products

Direct product of sets. Recall that if (Sα | α ∈ I) is a family of sets1 indexed by
the indexing set I, then the set-theoretic product

∏
α∈I Sα makes sense. It consists

of families of elements (sα | sα ∈ Sα). For brevity we often write (Sα)α∈I and (Sα)
to indicate a family. A similar convention is in operation for families of elements, so
that (sα) ∈

∏
α∈I ∈ Sα is a short form for (sα | sα ∈ Sα) ∈

∏
α∈I ∈ Sα. Variants of

this notation (all of which we will use) include (sα)α, (sα)α∈I , etc. It is standard to
identify (sα) ∈

∏
α Sα with maps s : I → ∪α∈ISα such that the image of α ∈ I lies

in Sα. The only point is that in this notation, the argument α is a suffix, in other
words one writes sα instead of the more conventional s(α). All of this should be
familiar to you from the definition of a sequence of real or complex numbers used in
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1Informally, the difference between a family and a collection (i.e., a set) is that for sets, the

collection of objects {Aα | Aα = A,α ∈ I} = {A}, whereas in a family repetitions indexed by
different elements are not collapsed, in other words(Aα | Aα = A,α ∈ I) 6= (A) unless the indexing

set I consists of one element.
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analysis. Note that if I is a finite set, say I = {1, . . . , n} we make the identification
(sα) = (s1, . . . , sn), and often write S1 × . . . Sn or

∏n
i=1 Si for the product of sets.

Direct product of modules. Let (Mα | α ∈ I) be a family of modules. The direct
product of this collection is the set

∏
α∈IMα with the addition law (xα) + (yα) =

(xα + yα) and with scalar multiplication a(xα) = (axα). We denote the direct
product by the same symbol we used for the product of the underlying sets, namely
the symbol

∏
α∈IMα (or just

∏
αMα). For β ∈ I, we have the projection map

πβ :
∏
αMα →Mβ , namely (xα) 7→ xβ . From the definition of the module structure

on
∏
αMα, it is clear that πβ is a module homomorphism. The direct product,

together with the family of projections (πα) has the following property. Let N be a
module and suppose we have module homomorphisms, ϕα : N →Mα, one for each
α ∈ I. Then there is a unique homomorphism of modules

ϕ : N →
∏
α

Mα

such that πα ◦ϕ = ϕα, α ∈ I. The map ϕ is the map x 7→ (ϕα(x)), x ∈ N . For the
direct product of two modules, M1 and M2, this universal property can be expressed
diagramatically as follows. Suppose we have a diagram as below. Then there is one
and only one way to fill the dotted arrow to make the diagram commute.

M1

N
∃!ϕ //

ϕ2 --

ϕ1

11

M1 ×M2

π2

$$J
JJ

JJ
JJ

JJ

π1

::ttttttttt

M2

Direct sum of modules. The direct sum of a family of modules (Mα)α∈I is⊕
α∈I

Mα = {(xα) ∈
∏
α

Mα | xα = 0 for all but a finite number α ∈ I}.

One checks that
⊕

αMα is a submodule of
∏
αMα. For a finite number of modules,

say M1, . . . , Mn, we often write
⊕n

i=1Mi or M1⊕· · ·⊕Mn for the direct sum. We
have injective homomorphisms of modules (monomorphisms) iβ : Mα →

⊕
αMα,

one for each β ∈ I, given by πα(iβ(x)) = x if α = β and is 0 otherwise. Note that
this defines iβ , for it describes iβ(x) as a map I → ∪αMα, namely as α 7→ δ

α,β
x,

where δ
α,β

is the Kronecker delta. It is easy to see that iβ is an injective map
and a module homomorphism. The direct sum also has a universal property which
is in some sense “dual” to the universal property of direct products, namely, if
N is a module and we have module homomorphisms fα : Mα → N , one for each
α ∈ I, then there is a unique homomorphism of modules f :

⊕
αMα → N such

that fα = f ◦ iα. For two modules M1 and M2, this universal property is expressed
in terms of the diagram below, namely there is a unique map which fills the dotted
arrow to make the diagram commute.
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Sums and Internal direct sums. Recall that if if N is an A-module, and Mα,
α ∈ I are submodules of N then

∑
αMα is the submodule of N generated by ∪αMα.

Let M =
∑
αMα. Then each Mα is a submodule of M . We have inclusion maps

jα : Mα → M which are A-module homomorphisms. By the universal property of
direct sums, we have a unique map

j :
⊕
α

Mα →
∑
α

Mα = M

such that j ◦ iα = jα for every α. The map j is clearly surjective. Indeed j is also
described by (xα) 7→

∑
α xα, and using this description surjectivity is clear. In the

event this is an isomorphism, we do not distinguish between
⊕

αMα and
∑
αMα

and write ⊕
α

Mα =
∑
α

Mα.

Free Modules

Let M be an A-module. A subset S of M is said to be linearly independent if
whenever

∑
α aαsα = 0, we have aα = 0 for all α. A family of elements (sα | α ∈ I)

in M is said to be linearly independent if the same condition holds, namely if∑
α sα = 0 then every sα is zero. Note that if A is a field, and M is a non-zero

vector space, and x ∈M is a non-zero element, then the set S = {x, x, x} is linearly
independent (since S = {x}), but the family (x, x, x) is not linearly independent. A
set (resp. family) which is not linearly independent is said to be linearly dependent.
Note that if a family of elements (sα | α ∈ I)is linearly independent, it necessarily
consists of distinct elements, and in this one instance, we have no confusion if we
identify the family (sα | α ∈ I) with the set {sα | α ∈ I}.

If S is linearly independent and generates M it is said to be a basis of M . Suppose
S = {sα | α ∈ I} is a basis of M . Then, as for vector spaces, every element x of M
has a unique representation as x =

∑
α aαsα where aα ∈ A. Similarly one defines

what it means for a family (sα | α ∈ I) to be a basis, and in view of the remark
in the last sentence of the last paragraph, there is no confusion in switching from
families to sets (or vice versa) when talking about bases.

If (sα) is linearly independent, then asα = 0 if and only if sα = 0. Therefore no
member of a linearly independent set of family can be a torsion element. In other
words

ann(sα) = 0

for every α.
Not every module has a basis. Consider the following example. Let A = Z and

M = Z/2Z. Since every element of M is a torsion element (take a = 2, then ax = 0
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for all x ∈ M), it is clear that M cannot have a linearly independent set, and so
M cannot have a basis.

Definition. A module M is said to be free if either M = 0 or if it has a basis.


