HW3

We work throughout in an abelian category \mathscr{A}. Fix a complex $\left(\mathcal{K}^{\bullet}, d\right)$ which is the total complex of an anti-commuting double complex $K^{\bullet \bullet}=\left(K, d_{1}, d_{2}\right)$ with the property that $K^{\bullet \bullet}$ is bounded on the left and below by p_{0} and q_{0} respectively. Recall that under the last hypothesis, $\mathcal{K}^{\bullet}={ }^{\prime} \operatorname{Tot}{ }^{\bullet} K^{\bullet \bullet}$ exists without assuming \mathscr{A} has countable direct sums.
(1) Let $A^{\bullet \bullet}=\left(A, \partial_{1}, \partial_{2}\right)$ and $D^{\bullet \bullet}=\left(D, \delta_{1}, \delta_{2}\right)$ be data given by

$$
A^{p, q}=D^{p, q}=K^{p, q}
$$

and whose partial coboundaries are given by:

$$
\begin{aligned}
\partial_{1}^{p, q} & =d_{1}^{p, q} & \partial_{2}^{p, q}=(-1)^{p} d_{2}^{p, q} \\
\delta_{1}^{p, q} & =(-1)^{q} d_{1}^{p, q} & \delta_{2}^{p, q}=d_{2}^{p, q} .
\end{aligned}
$$

(a) Show that $\left(\operatorname{Tot}^{\bullet} A^{\bullet \bullet}, \partial\right)=\left(\mathcal{K}^{\bullet}, d\right)$.
(b) Show that $\operatorname{Tot} D^{\bullet \bullet}$ is isomorphic to $\left(\mathcal{K}^{\bullet}, d\right)$.
(2) Suppose \mathscr{A} is the category of left modules over a ring. Show by chasing elements that if the columns of $K^{\bullet \bullet}$ are exact, then \mathcal{K}^{\bullet} is exact.
(3) Do the above problem without the assumption made on \mathscr{A} in that problem.

Recall that each row and each column of $K^{\bullet \bullet}$ is a complex. For a fixed q, let R_{q}^{\bullet} be the $q^{\text {th }}$ row, and for a fixed p, let C_{p}^{\bullet} be the $p^{\text {th }}$ column. In somewhat greater detail the $n^{\text {th }}$ term of R_{q}^{\bullet} is $K^{n-q, q}$ (and not $K^{n, q}!$). We point out that R_{q}^{\bullet} is also the $q^{\text {th }}$ row of the standard double complex $A^{\bullet \bullet}$ of Problem 1 and C_{p}^{\bullet} is almost the $p^{\text {th }}$ column of $D^{\bullet \bullet}$ of the same problem-the modification needed is that coboundaries of the new column are obtained from the old by multiplying by $(-1)^{p}$. To lighten notation, write R^{\bullet} for the bottom most row i.e., $R^{\bullet}=R_{q_{0}}^{\bullet}$, and write Z^{\bullet} for the sub-complex of R^{\bullet} defined by $Z^{n}=\operatorname{ker}\left(d_{2}^{n-q_{0}, q_{0}}\right)$.
(4) Show that the natural inclusion $Z^{\bullet} \hookrightarrow \mathcal{K}^{\bullet}$ given by the composite $Z^{n} \hookrightarrow$ $A^{n-q_{0}, q_{0}}=K^{n-q_{0}, q_{0}} \hookrightarrow \mathcal{K}^{n}$ is a map of complexes.

Problem 5 is on the next page.

Let $Z^{\bullet} \hookrightarrow R^{\bullet}$ be as above. Let

$$
\varphi: C^{\bullet} \rightarrow Z^{\bullet}
$$

be a map of complexes, where as before. Define $\widetilde{A} \cdot \bullet=\left(\widetilde{A}, \widetilde{\partial}_{1}, \widetilde{\partial}_{2}\right)$ as follows. The objects at the $(p, q)^{\text {th }}$ spot are: $\widetilde{A}^{p, q}=A^{p, q}$ for $q \neq q_{0}-1, \widetilde{A}^{p, q_{0}-1}=C^{p+q_{0}}$. The partial coboundaries given are described thus. For $q \neq q_{0}-1$ set $\widetilde{\partial}_{1}^{p, q}=\partial_{1}^{p, q}$, and $\widetilde{\partial}_{2}^{p, q}=\partial_{2}^{p, q}$. When $q=q_{0}-1$ set $\widetilde{\partial}_{1}^{p, q_{0}-1}=\partial_{C}^{p+q_{0}}, \widetilde{\partial}_{2}^{p, q_{0}-1}=\varphi^{p+q_{0}}$, where ∂_{C} is the coboundary of $C \bullet$.
(5) (a) Check that $\widetilde{A} \cdot \bullet$ is indeed a double complex.
(b) Composing $\varphi: C^{\bullet} \rightarrow Z^{\bullet}$ with the map in Problem 4, we get a map of complexes $\psi: C^{\bullet} \rightarrow \mathcal{K}^{\bullet}$. Show that ψ is a quasi-isomorphism if and only if $\operatorname{Tot}{ }^{\bullet} \widetilde{A}^{\bullet \bullet}$ is exact.

Remark. Note that if we have a complex C^{\bullet} and maps $\varphi^{n}: C^{n} \rightarrow A^{n-q_{0}, q_{0}}=$ $K^{n-q_{0}, q_{0}}, n \in \mathbb{Z}$, such that the resulting maps $C^{n} \rightarrow \mathcal{K}^{n}$ give us a map of complexes, $C^{\bullet} \rightarrow \mathcal{K}^{\bullet}$, then φ^{n} must factor through $Z^{n} \hookrightarrow A^{n-q_{0}, q_{0}}$, i.e., the map of complexes $C^{\bullet} \rightarrow \mathcal{K}^{\bullet}$ must factor through $Z^{\bullet} \hookrightarrow \mathcal{K}^{\bullet}$.

