We work throughout in an abelian category \mathscr{A} . Fix a complex (K^{\bullet}, d) which is the total complex of an *anti-commuting* double complex $K^{\bullet \bullet} = (K, d_1, d_2)$ with the property that $K^{\bullet \bullet}$ is bounded on the left and below by p_0 and q_0 respectively. Recall that under the last hypothesis, $K^{\bullet} = {}' \text{Tot}^{\bullet} K^{\bullet \bullet}$ exists without assuming \mathscr{A} has countable direct sums.

(1) Let $A^{\bullet \bullet} = (A, \partial_1, \partial_2)$ and $D^{\bullet \bullet} = (D, \delta_1, \delta_2)$ be data given by $A^{p,q} = D^{p,q} = K^{p,q}$

and whose partial coboundaries are given by:

$$\begin{array}{ll} \partial_1^{p,q} = d_1^{p,q} & \qquad \qquad \partial_2^{p,q} = (-1)^p d_2^{p,q} \\ \delta_1^{p,q} = (-1)^q d_1^{p,q} & \qquad \qquad \delta_2^{p,q} = d_2^{p,q}. \end{array}$$

- (a) Show that $(\operatorname{Tot}^{\bullet} A^{\bullet \bullet}, \partial) = (\mathcal{K}^{\bullet}, d)$.
- (b) Show that $\operatorname{Tot}^{\bullet}D^{\bullet\bullet}$ is isomorphic to $(\mathcal{K}^{\bullet}, d)$.
- (2) Suppose \mathscr{A} is the category of left modules over a ring. Show by *chasing* elements that if the columns of $K^{\bullet \bullet}$ are exact, then \mathcal{K}^{\bullet} is exact.
- (3) Do the above problem without the assumption made on \mathscr{A} in that problem.

Recall that each row and each column of $K^{\bullet \bullet}$ is a complex. For a fixed q, let R_q^{\bullet} be the $q^{\rm th}$ row, and for a fixed p, let C_p^{\bullet} be the $p^{\rm th}$ column. In somewhat greater detail the $n^{\rm th}$ term of R_q^{\bullet} is $K^{n-q,q}$ (and not $K^{n,q}$!). We point out that R_q^{\bullet} is also the $q^{\rm th}$ row of the standard double complex $A^{\bullet \bullet}$ of Problem 1 and C_p^{\bullet} is almost the $p^{\rm th}$ column of $D^{\bullet \bullet}$ of the same problem—the modification needed is that coboundaries of the new column are obtained from the old by multiplying by $(-1)^p$. To lighten notation, write R^{\bullet} for the bottom most row i.e., $R^{\bullet} = R_{q_0}^{\bullet}$, and write Z^{\bullet} for the sub-complex of R^{\bullet} defined by $Z^n = \ker(d_2^{n-q_0,q_0})$.

(4) Show that the natural inclusion $Z^{\bullet} \hookrightarrow \mathcal{K}^{\bullet}$ given by the composite $Z^n \hookrightarrow A^{n-q_0,q_0} = K^{n-q_0,q_0} \hookrightarrow \mathcal{K}^n$ is a map of complexes.

Problem 5 is on the next page.

Let $Z^{\bullet} \hookrightarrow R^{\bullet}$ be as above. Let

$$\varphi\colon C^{\bullet}\to Z^{\bullet}$$

be a map of complexes, where as before. Define $\widetilde{A}^{\bullet \bullet} = (\widetilde{A}, \widetilde{\partial}_1, \widetilde{\partial}_2)$ as follows. The objects at the $(p,q)^{\rm th}$ spot are: $\widetilde{A}^{p,q} = A^{p,q}$ for $q \neq q_0 - 1$, $\widetilde{A}^{p,q_0-1} = C^{p+q_0}$. The partial coboundaries given are described thus. For $q \neq q_0 - 1$ set $\widetilde{\partial}_1^{p,q} = \partial_1^{p,q}$, and $\widetilde{\partial}_2^{p,q} = \partial_2^{p,q}$. When $q = q_0 - 1$ set $\widetilde{\partial}_1^{p,q_0-1} = \partial_C^{p+q_0}$, $\widetilde{\partial}_2^{p,q_0-1} = \varphi^{p+q_0}$, where ∂_C is the coboundary of C^{\bullet} .

- (5) (a) Check that $\widetilde{A}^{\bullet \bullet}$ is indeed a double complex.
 - (b) Composing $\varphi \colon C^{\bullet} \to Z^{\bullet}$ with the map in Problem 4, we get a map of complexes $\psi \colon C^{\bullet} \to \mathcal{K}^{\bullet}$. Show that ψ is a quasi-isomorphism if and only if $\operatorname{Tot}^{\bullet} \widetilde{A}^{\bullet \bullet}$ is exact.

Remark. Note that if we have a complex C^{\bullet} and maps $\varphi^n : C^n \to A^{n-q_0,q_0} = K^{n-q_0,q_0}$, $n \in \mathbb{Z}$, such that the resulting maps $C^n \to \mathcal{K}^n$ give us a map of complexes, $C^{\bullet} \to \mathcal{K}^{\bullet}$, then φ^n must factor through $Z^n \hookrightarrow A^{n-q_0,q_0}$, i.e., the map of complexes $C^{\bullet} \to \mathcal{K}^{\bullet}$ must factor through $Z^{\bullet} \hookrightarrow \mathcal{K}^{\bullet}$.