HW-5

As always, "map" is used for "morphism".

Read the definitions of an exact, additive, and abelian categories from the notes handed out in class (downloadable from the website).

Definition 1. Let \mathscr{C} be an exact category. An exact sequence in \mathscr{C} is a sequence of maps in \mathscr{C}

$$\dots C^{p-1} \xrightarrow{d^{p-1}} C^p \xrightarrow{d^p} C^{p+1} \xrightarrow{d^{p+1}} \dots$$

such that $\operatorname{im} d^{p-1} = \ker d^p$, $p \in \mathbb{Z}$.

Definition 2. If \mathscr{C} is any category, its opposite category, \mathscr{C}° is the category whose objects are the objects of \mathscr{C} , and a morphism $A \to B$ in \mathscr{C}° is a morphism $B \to A$ in \mathscr{C} . A contravariant functor on \mathscr{C} is nothing but a functor on \mathscr{C}° .

- (1) Suppose \mathscr{C} is an exact category. Show that \mathscr{C}° is also an exact category, where, if $\alpha \colon A \to B$ is a map in \mathscr{C}° corresponding to $\check{\alpha} \colon B \to A$ in \mathscr{C} , then ker α corresponds to coker $\check{\alpha}$, etc., etc.
- (2) Let \mathscr{C} be an exact category. Consider the commutative diagram

with exact rows.

- (a) Show that ker $\alpha \to \ker \beta$ is the kernel for ker $\beta \to R$.
- (b) Show that $0 \to \ker \alpha \to \ker \beta \to \ker \gamma$ is exact.
- (c) What would be the "dual" statement to (2b)? In other words consider the statement (2b) in the exact category \mathscr{C}° and translate that statement back to \mathscr{C} , and tell me what the new statement is.
- (3) Let

be a commutative diagram in an exact category $\mathscr C$ such that the rows are exact, and the left column is exact.

- (a) Show that coker $h \to \text{coker } i$ is an isomorphism. (Use the last part of the previous problem is necessary.)
- (b) Show that $G' \to \operatorname{im} h \to \operatorname{im} i$ is exact. [Hint: Replace P, Q, R, P', Q', R' in 2 by ker $(H' \to I'), H', I', 0$, coker h, and coker i respectively, and use the result from (2b).]
- (c) Use the above to show that ker $h \to \ker i$ is surjective.
- (4) Let \mathscr{C} be an exact category. Suppose we have a commutative diagram with exact rows, with the column on the extreme left also exact:

Show that the induced sequence

 $\ker\beta\to\ker\gamma\to\ker\delta$

is also exact.

Using the above we will prove the **snake lemma** in class. This lemma says that if we have an exact commutative diagram in an exact category:

then there is an exact sequence:

 $\ker\beta\to \ker\gamma\to \ker\delta\to \operatorname{coker}\beta\to \operatorname{coker}\gamma\to \operatorname{coker}\delta$

(5) Assume the snake lemma. Show that if we have a commutative diagram

with exact rows in an exact category such that α , β , δ , and ϵ are isomorphisms, then so is γ .