HW-IV

Throughout A is a commutative ring. For any A-module M, $\operatorname{End}(M)$ (or if we wish to emphasise the role of the underlying ring $\left.A, \operatorname{End}_{A} M\right)$ will denote the ring of endomorphisms of M.

In what follows, E will be a finitely generated free A-module of rank n. For an A-map $T \in \operatorname{End}(E)$, define $\operatorname{det} T \in A$ to be the unique element such that $\wedge^{n} T: \wedge^{n} E \rightarrow \wedge^{n} E$ is given by $x_{1} \wedge \cdots \wedge x_{n} \mapsto \operatorname{det} T\left(x_{1} \wedge \cdots \wedge x_{n}\right)$. The top exterior product of E, namely $\wedge^{n} E$ is denoted $\operatorname{det} E$.

The dual of E is the free module $E^{\vee}=\operatorname{Hom}_{A}(E, A)$.
For $T \in \operatorname{End}(E), T^{t} \in \operatorname{End}\left(E^{\vee}\right)$ will denote the transpose of T, i.e., $\left(T^{t}(f)\right)(x)=$ $f(T(x))$ for $f \in E^{\vee}$ and $x \in E$.
(1) Show that det $: \operatorname{End}(E) \rightarrow A$ is a ring homomorphism.
(2) Let $n=2$. Show that

$$
\left(a_{11} e_{1}+a_{21} e_{2}\right) \wedge\left(a_{12} e_{1}+a_{22} e_{2}\right)=\left(a_{11} a_{22}-a_{21} a_{12}\right) e_{a} \wedge e_{2}
$$

(3) Let

$$
0 \rightarrow E^{\prime} \rightarrow E \rightarrow E^{\prime \prime}
$$

be a short exact sequence of free modules (E as above), with rank $E^{\prime}=r$. Let $f_{1}, \ldots, f_{r} \in E^{\prime}, g_{r+1}, \ldots, g_{n} \in E^{\prime \prime}$, and for $r \leq i \leq n$, let $f_{i} \in E$ be a preimage of $g_{i} \in E^{\prime \prime}$. Show that $f_{1} \wedge \cdots \wedge f_{n} \in \wedge^{n} E$ does not depend on the choice of the preimages f_{r+1}, \ldots, f_{n}. Prove that $f_{1} \wedge \cdots \wedge f_{r} \otimes g_{r+1} \wedge$ $\cdots \wedge g_{n} \mapsto f_{1} \wedge \cdots \wedge f_{n}$ gives an isomorphism

$$
\operatorname{det} E^{\prime} \otimes_{A} \operatorname{det} E^{\prime \prime} \xrightarrow{\sim} \operatorname{det} E .
$$

In general, for any non-negative integer m, show

$$
\bigoplus_{p+q=m} \wedge^{p} E^{\prime} \otimes_{A} \wedge^{q} E^{\prime \prime} \cong \wedge^{m} E
$$

(4) Let $\varphi_{r}: \wedge^{r} E^{\vee} \rightarrow\left(\wedge^{r} E\right)^{\vee}$ be the map

$$
\left(\varphi_{r}\left(f_{1} \wedge \cdots \wedge f_{r}\right)\right)\left(x_{1} \wedge \cdots \wedge x_{r}\right)=\sum_{\sigma \in S_{r}} \operatorname{sgn}(\sigma) f_{i}\left(x_{\sigma i}\right)
$$

Show that φ_{r} is an isomorphism. Show also that the following diagram commutes

for every $T \in \operatorname{End}(E)$.

Minor matters. Fix a basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of E. Let $T \in \operatorname{End}(E)$ and $v \in E$. For $1 \leq j \leq n$ let $T(j, v) \in \operatorname{End}(E)$ be the endomorphism defined by

$$
T(j, v)\left(e_{i}\right)= \begin{cases}T\left(e_{i}\right) & i \neq j \\ v & i=j\end{cases}
$$

Let F be a free module of rank $n-1$ with basis f_{1}, \ldots, f_{n-1}. For $1 \leq i \leq n$ define A-maps $\lambda_{i}: F \rightarrow E$ and $\mu_{i}: E \rightarrow F$ by

$$
\lambda_{i}\left(f_{j}\right)= \begin{cases}e_{j} & 1 \leq j<i \\ e_{j+1} & i \leq j \leq n-1\end{cases}
$$

and

$$
\mu_{i}\left(e_{j}\right)= \begin{cases}f_{j} & 1 \leq j<i \\ 0 & j=i \\ f_{j-1} & i<j \leq n\end{cases}
$$

For $T \in \operatorname{End}(E)$ and $1 \leq i, j \leq n$ define $T_{i j} \in \operatorname{End}(F)$ by $T_{i j}=\mu_{i} \circ T \circ \lambda_{j}$. Note that $T_{i j}$ is defined by the commutativity of the following diagram:

(5) Show that $\operatorname{det}(T)=\sum_{i=1}^{n} a_{i j} \operatorname{det}\left(T\left(j, e_{i}\right)\right)$ where $\left(a_{i j}\right)$ is the matrix of T with respect to the basis $\left(e_{i}\right)$.
(6) Show that $\operatorname{det}\left(T\left(j, e_{i}\right)\right)=(-1)^{i+j} \operatorname{det} T_{i j}$. Deduce that $\operatorname{det}(T)$ is given by the Laplace expansion for the matrix of T with respect to $\left(e_{i}\right)$ along a column.
(7) Show that
$\left(\left(\wedge^{n-1} T\right)\left(e_{1} \wedge \cdots \wedge \hat{e}_{j} \wedge \cdots \wedge e_{n}\right)\right) \wedge v=(-1)^{n-j} \operatorname{det}\left(T\left(e_{j}, v\right)\right) e_{1} \wedge \cdots \wedge e_{n}$.
(8) Show that if $\left(T\left(e_{i}\right)\right)$ are linearly dependent, then $\operatorname{det}(T)=0$.
(9) Show that if T is invertible then $\operatorname{det}(T)$ is invertible. Can you show the converse?

