HW 3

Throughout, A is a commutative ring. Recall that if M_{1}, \ldots, M_{n} are A-modules, the tensor product $\left(M_{1} \otimes_{A} \cdots \otimes_{A} M_{n}, \Psi_{u}\right)$ is an A-module $M_{1} \otimes_{A} \cdots \otimes_{A} M_{n}$ together with an A-multilinear map $\Psi_{u}: M_{1} \times \cdots \times M_{n} \rightarrow M_{1} \otimes_{A} \cdots \otimes_{A} M_{n}$ such that if $\psi: M_{1} \times \cdots \times M_{n} \rightarrow T$ is A-multilinear, there exists a unique map of A-modules $\varphi: M_{1} \otimes_{A} \cdots \otimes_{A} M_{n} \rightarrow T$ such that $\varphi: \Psi_{u}=\psi$. In other words there is a unique way to fill the dotted arrow to make the diagram below commute:

In what follows, a "module" means an " A-module". Similarly, "multilinear", "bilinear" mean " A-multilinear" and " A-bilinear" respectively.

You are expected to use the universal property of tensor products to solve the problems below. You will never need the actual construction of the tensor product.
(1) Let M_{1}, M_{2}, M_{3} be modules. Show that there are canonical isomorphisms

$$
\left(M_{1} \otimes_{A} M_{2}\right) \otimes_{A} M_{3} \xrightarrow{\sim} M_{1} \otimes_{A} M_{2} \otimes_{A} M_{3} \xrightarrow{\sim} M_{1} \otimes_{A}\left(M_{2} \otimes_{A} M_{3}\right) .
$$

(2) Let M, N, T be A-modules.
(a) Suppose $\psi: M \times N \rightarrow T$ is bilinear. For each $m \in M$, let $\psi_{m}: N \rightarrow T$ be the map $n \mapsto \psi(m, n)$. Show that the map $\varphi: M \rightarrow \operatorname{Hom}_{A}(N, T)$ given by $m \mapsto \psi_{m}$ is A-linear.
(b) Conversely, show that if $\varphi: M \rightarrow \operatorname{Hom}_{A}(N, T)$ is A-linear, then the $\operatorname{map} \psi: M \times N \rightarrow T$ given by $(m, n) \mapsto \varphi(m)(n)$ is bilinear. Show also that $\varphi(m)$ is the map ψ_{m} of the part (a).
(c) Show that we have a canonical isomorphism

$$
\operatorname{Hom}_{A}\left(M, \operatorname{Hom}_{A}(N, T)\right) \xrightarrow{\sim} \operatorname{Hom}_{A}\left(M \otimes_{A} N, T\right) .
$$

(3) Let $M \in \operatorname{Mod}_{A}$. For an A-linear map $\varphi: N \rightarrow T$, let $M \otimes_{A} \varphi: M \otimes_{A} N \rightarrow$ $M \otimes_{A} T$ be the map defined by $m \otimes n \mapsto m \otimes \varphi(n)$.
(a) Show that $M \otimes_{A} \varphi$ is well defined.
(b) Show that if

$$
0 \rightarrow N^{\prime} \rightarrow N \rightarrow N^{\prime \prime} \rightarrow 0
$$

is an exact sequence, then

$$
M \otimes_{A} N^{\prime} \rightarrow M \otimes_{A} N \rightarrow M \otimes_{A} N^{\prime \prime} \rightarrow 0
$$

is exact.

[^0](c) With the notations and hypotheses of part (b) show that
$$
0 \rightarrow M \otimes_{A} N^{\prime} \rightarrow M \otimes_{A} N \rightarrow M \otimes_{A} N^{\prime \prime} \rightarrow 0
$$
need not be exact.
(4) Let $\left(M_{\lambda}\right)$ be a direct system of modules. Show that
$$
\left(\underset{\lambda}{\lim } M_{\lambda}\right) \otimes_{A} N=\underset{\lambda}{\lim }\left(M_{\lambda} \otimes_{A} N\right) .
$$
(5) Let M_{1}, \ldots, M_{n} be modules.
(a) Show that
$$
\left(\bigoplus_{i=1}^{n} M_{i}\right) \otimes_{A} N=\bigoplus_{i=1}^{n}\left(M_{i} \otimes_{A} N\right)
$$
(b) Show that
$$
\left(\bigoplus_{\alpha \in I} M_{\alpha}\right) \otimes_{A} N=\bigoplus_{\alpha \in I}\left(M_{\alpha} \otimes_{A} N\right)
$$
for an arbitrary direct sum $\bigoplus_{\alpha \in I} M_{\alpha}$.
(6) Let I be an ideal of A and M a module. Show that $M \otimes_{A}(A / I)=M / I M$.

[^0]: Date: September 9, 2015.

