HW 2

Throughout, A is a ring. Please consult Notes 2 (which has been uploaded) for definitions and orienting comments.
(1) Let (Λ, \prec) be a directed set and $\Gamma \subset \Lambda$ a cofinal sub-directed set. Show that if $\left(M_{\lambda}\right)_{\lambda \in \Lambda}$ is a direct system, then there is an isomorphism

$$
\operatorname{Hom}_{\Lambda}\left(\left(M_{\lambda}\right)_{\lambda \in \Lambda}, T\right) \xrightarrow{\sim} \operatorname{Hom}_{\Gamma}\left(\left(M_{\gamma}\right)_{\gamma \in \Gamma}, T\right)
$$

for every module T.
(2) With the above notations show that

$$
\lim _{\lambda \in \Lambda} M_{\lambda} \xrightarrow{\sim} \underset{\gamma \in \Gamma}{\lim } M_{\gamma} .
$$

(3) Let k be a field, V a vector space over k, and $T_{i}: V \rightarrow V, i=1, \ldots, n$ be n linear operators on V which commute with each other. on V. Let $A=k\left[X_{1}, \ldots, X_{n}\right]$, the polynomial ring in n-variables over k.
(a) Show that V is an A-module via the map $A \times V \rightarrow V$ given by $(f(X), v) \mapsto f(T) v$ for $f(X) \in A$ and $v \in V$.
(b) Suppose V is finite dimensional as a k-vector space, say $\operatorname{dim}_{k} V=d$. Show that $V_{\text {tor }}=V$, where $V_{\text {tor }}$ is the torsion module for V as an A-module (not as a k-module).
(4) Let A be commutative, I an ideal of A and M an A-module. Let $0: I$ be the subset of M given by

$$
0: I=\{x \in M \mid a x=0, \forall a \in I\}
$$

Show that $0: I$ is a submodule of M. Show that $\operatorname{Hom}_{A}(A / I, M)$ is isomorphic to $0: I_{M}^{M}$ as an A-module.
(5) Let A be commutative, and let I and M be as above. Define

$$
\Gamma_{I}(M)=\left\{x \in M \mid I^{n} x=0 \text { for some } n>0\right\}
$$

Show that $\Gamma_{I}(M)$ is an A-submodule. Show also that $\left(\operatorname{Hom}_{A}\left(A / I^{n}, M\right)\right)_{n}$ is a direct system of A-modules, and that

$$
\underset{n}{\lim } \operatorname{Hom}_{A}\left(A / I^{n}, M\right) \xrightarrow{\sim} \Gamma_{I}(M) .
$$

(6) Suppose A is a commutative ring and $t \in A$ is an element. Let M be an A-module. Let $M_{n}=M$ for all $n \in \mathbb{N}$, and $\mu_{n, m}: M_{m} \rightarrow M_{n}$ the map $x \mapsto t^{n-m} x$ for $m<n$. Show that $\left(M_{n}, \mu_{n, m}\right)$ is a direct system of A-modules. Show also (with M_{t} the localisation of M at t) that

$$
\underset{n}{\lim } M_{n} \xrightarrow{\sim} M_{t} .
$$

[^0]
[^0]: Date: August 19, 2015.

