
VECTOR FIELDS

This is a quick introduction to the subject, and we will only do as much as we
need for the course. You will see all this in greater detail if you take a course on
Differential Topology at some point.

1. Derivations

1.1. Germs of smooth functions. Let a ∈ Rn. Suppose Ω is an open neigh-
bourhood of a in Rn. An R-linear map D : C∞(Ω) → R is called a derivation on
C∞(Ω) at a if D(fg) = f(a)Dg + g(a)Df for all f, g ∈ C∞(Ω). For example, the
operators

(1.1.1) Di,a =
∂

∂xi

∣∣∣
x=a

, i = 1, . . . , n

are all derivations on C∞(Ω) at a. However, note that the displayed operators Di,a

make sense on any open neighbourhood of a. More importantly, f, g ∈ C∞(Ω) are
such that f |U = g|U for some open neighbourhood U of a, then Di,a(f) = Di,a(g)
for i = 1, . . . , n. Our goal is to mimic these properties of the Di,a. To that

end, define an equivalence relation
a∼ on the set of pairs (U, f) with U an open

neighbourhood of a in Rn and f : U → R a C∞ function by the rule that (U, f)
a∼

(V, g) if there exists an set W , open in Rn, with a ∈ W ⊂ U ∩ V , such that
f |W = g|W . Note that writing the first member of the pair (U, f) is superfluous
since a function comes with a domain. Nevertheless, since we sometimes need
flexibility about the domain of a function, it is useful to write out pairs the way we
have. That said, it is also useful not to so write. And we will do both, so long as
the context is clear. As an aside, we write Dom(f) for the domain of a function f ,
in the event the domain has not been independently identified by us.

Definition 1.1.2. Let f be a C∞ function defined in an open neighbourhood of

a. The germ of f at a is the equivalence class of f under
a∼.

We will denote the set of germs (of C∞ functions) at a by the symbol C∞a . Note
that C∞a is an R-algebra. In greater detail, if fa and ga are two germs at a, say fa
represented by f and ga by g, then on Dom(f)∩Dom(g) we can multiply f and g.
It is easy to see that the germ of fg at a does not depend on the representatives f
and g of fa and ga respectively. We denote this germ of fg by faga. This defines
a product on C∞a which is makes it into an R-algebra. This fact is easy to verify.
Note also that if fa ∈ C∞a , then the value of fa at a is well defined. In other words,
if (U, f) and (V, g) both represent fa, then f(a) = g(a). We denote the value of fa
at a by fa(a). For the algebraically minded:

C∞a = lim−−→
U3a

C∞(U).

This fact is not important for this course, and feel free to ignore it.
Note that if we have a ∈ V ⊂ U , with U and V open sets in Rn, then the germ

of (U, f) is equal to the germ of (V, f |V ) for f ∈ C∞(U).
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We will often use the symbols f and g for germs at a as well as for functions on
subsets of Rn. What we mean will be clear from the context.

Definition 1.1.3. An R-linear map D : C∞a → R is said to be a derivation at a if
D(fg) = f(a)Dg+g(a)Df for all f, g ∈ C∞a . The set of derivations at a is denoted
Dera.

1.1.4. For D as above we often say D is a derivation on C∞a , or, when we wish
to be precise, D is an R-valued derivation on C∞a . It is clear that the set Dera of
R-valued derivations on C∞a is a vector space over R. We will see in Theorem 1.1.9
below that it is in fact n-dimensional, with a basis consisting of the standard partial
derivative operators Di,a at a.

Example 1.1.5. The derivations Di,a defined on C∞(Ω) (see (1.1.1))are really
derivations on C∞a from the comments we made right after introducing them.
Which way we regard them will be clear from the context.

Lemma 1.1.6. Fix a ∈ Rn and regard elements of R as elements of C∞a as well
as of C∞(Ω) for any open set Ω in Rn.

(a) Let D : C∞a → R be a derivation. Then D(c) = 0 for c ∈ R.
(b) Let Ω be an open set in Rn containing a and D a derivation on C∞(Ω) at a.

Then D(c) = 0 for c ∈ R.

Proof. Let D : C∞a → R be a derivation. Since 1 = 12, we have D(1) = D(12) =
2D(1), whence D(1) = 0. Now if c ∈ R, then D(c) = D(c · 1) = cD(1) = 0. This
proves (a). Part (b) is proved in exactly the same manner. �

Next suppose D is a derivation on C∞a . Suppose f is a C∞ function in an
open neighbourhood of a. We may assume this neighbourhood is a ball centred
at a = (a1, . . . , an). Let x = (x1, . . . , xn) be a point in this neighbourhood, set
x− a = h = (h1, . . . , hn). Set g(t) = f(a+ th) for 0 ≤ t ≤ 1. Then, by the chain
rule,

.
g(t) =

∑n
i=1 hi(Di,a+thf) =

∑n
i=1(xi − ai)(Di,a+thf), whence

f(x) = f(a) +

∫ 1

0

.
g(t)dt = f(a) +

n∑
i=1

(xi − ai)
∫ 1

0

(Di,a+thf)dt.

Since h is a function of x, with h = x − a, the above can be regarded as an
expression for f as a function of x. Hence we can apply D to it (or, more precisely,
to its germ at a). Applying D and noting that h(a) = 0 and xi(a)− ai = 0 for all
i, we get:

Df =

n∑
i=1

{
D(xi − ai)

∫ 1

0

(Di,a+th(a)f)dt+ (xi(a)− ai)D
(∫ 1

0

(Di,a+th(x)f)dt
)}

=

n∑
i=1

D(xi)(Di,af)

For the last equality we are using the fact that a+th(a) = a and hence
∫ 1

0
(Di,a+th(a)f)dt =

(Di,af)
∫ 1

0
dt = Di,af . In other words if µi = D(xi) then

(1.1.7) D =

n∑
i=1

µiDi,a.
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This is often written more evocatively as

(1.1.8) D =

n∑
i=1

µi
∂

∂xi

∣∣∣
a
.

Theorem 1.1.9. For a ∈ Rn, dimR Dera = n and Di,a, i = 1, . . . , n, form a basis
for Dera.

Proof. From (1.1.7) it is clear that the collection {Di,a}ni=1 spans Dera. If πj : Rn →
R is the projection to the jth coordinate, and regarding πj as a germ at a, we have
Di,a(πj) = δij , where δij is the Kronecker delta symbol. Now suppose c1, . . . , cn

are elements of R such that
∑
i ciDi,a = 0. Then cj =

(∑
i ciDi,a

)
(πj) = 0 for

each j ∈ {1, . . . , n}. Thus {Di,a}ni=1 is a linearly independent collection. �

1.2. Derivations and velocity vectors. Let a ∈ V , where V is an open set in
Rn. Suppose we have a C 1 path γ : (α, β) → V and a point t◦ ∈ (α, β) such that
γ−1(a) = {t◦}. Let fa ∈ C∞a , and let (U, f) be a representative of fa, with (for
simplicity)1 U ⊂ V . Note that t◦ ∈ γ−1(U) and hence it makes sense to talk about
f ◦γ on γ−1(U). We define Dγ,a(fa) ∈ R by the formula

Dγ,a(fa) =
d

dt
(f◦γ)(t)

∣∣∣
t=t◦

.

It is clear that Dγ,a is well defined and that it is an R-valued derivation on C∞a .

(1.2.1) Dγ,a(fa) = f ′(a)
.
γ(t◦) = 〈∇(f)(a),

.
γ(t◦)〉.

Note that f ′(a) depends only on the germ of (U, f) at a. This means that Dγ,a
depends only on the velocity vector

.
γ(t◦).

Next, if γi is the ith component of γ, so that γ = (γ1, . . . , γn), then (1.2.1) gives
us Dγ,a(fa) =

∑n
i=1

.
γi(t◦)Di,a(fa). Thus

(1.2.2) Dγ,a=

n∑
i=1

.
γi(t◦)Di,a.

From (1.2.1), we have a well defined linear map from the vector space Vela of
velocity vectors at a to Dera and according to (1.2.2) this map is injective, since
Di,a, i = 1, . . . , n, forms a basis for Dera. Since Vela = Rn we therefore see that
the natural map Vela → Dera (given by v 7→

∑n
i=1 viDi,a) is an isomorphism.

1.3. Change of coordinates. Suppose a and V are as above. Let ψ : V →W be
diffeomorphism, with W an open subset of Rn. Let b = ψ(a). Now there is a one-
to-one correspondence between smooth paths in V passing through a and smooth
paths in W passing through b, the correspondence being γ 7→ ψ ◦γ. Moreover if
γ−1(a) is a singleton set, say {t0}, then (ψ◦γ)−1(b) = {t0}. This means there is a
one-to-one correspondence between velocity vectors at a and those at b, namely, if
σ = ψ◦γ, then the correspondence is

.
γ(t0) 7→ .

σ(t0). From the chain rule, we see
that

(1.3.1)
.
σ(t0) = ψ′(a)

.
γ(t0).

1Replace U with U ∩ V if necessary.
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We know from the discussion in §§1.2 above that there is an R-linear isomorphism
between velocity vectors at a (respectively b) and Dera (respectively Derb). This
gives us, via (1.3.1) and (1.2.2), a linear isomorphism

(1.3.2)
ψ∗ = ψ∗(a) : Dera −→∼ Derb

Dγ,a 7−→ D(ψ◦γ),b.

The map ψ∗ can also be described as follows. Let D ∈ Dera. Let gb ∈ C∞b , say gb
is represented by (U ′, g) (and as before, we can assume U ′ ⊂W ). Setting f = g ◦ψ
on U = ψ−1(U ′), we get a germ fa ∈ C∞a represented by (U, f). We can define
ψ∗(D)(gb) by the formula

(1.3.3) (ψ∗(D))(gb) = D(fa).

It is clear that ψ∗(D) ∈ Derb since it is really the avatar of D under the natural
isomorphism of R-algebras C∞b −→∼ C∞a given by (ignoring annoying trivialities
like the distinction between germs and functions representing germs) g 7→ g ◦ψ. In
other words

ψ∗ : Dera −→∼ Derb

is the isomorphism such that for each D ∈ Dera the following diagram commutes:

C∞b

ψ∗(D)

��3
333333333333 ˜ // C∞a

D

���������������

R

Since the horizontal arrow on top is an R-algebra isomorphism, it is clear ψ∗(D) is
an R-derivation, since D is an R-derivation. It is easy to see that the descriptions
of ψ∗ in (1.3.2) and (1.3.3) agree. This is really the chain rule. In summary we
have the following result.

Theorem 1.3.4. In the above situation, the matrix of ψ∗ : Dera −→∼ Derb with re-
spect to the bases D1,a, . . . ,Dn,a and D1,b, . . . ,Dn,b on Dera and Derb respectively
is the Jacobian matrix (Jψ)(a) of ψ at a.

Proof. This is a trivial consequence of (1.3.1), (1.2.2), and the definition of ψ∗ in
(1.3.2). �

1.3.5. The tangent space at a. In view of Problem 3 of HW 4 in ANA3 as well as
the statements before Problem 5 of HW 5 in ANA2, it is clear from our discussions
above that Dera can be identified with the tangent space of V at a. Since V
is “flat”, this does not seem to be useful. But the ideas translate to differential
manifolds where these ideas are extremely useful. For this reason, we do regard
Dera as Ta(V ), the tangent space to V at a.

2. Vector Fields

2.1. The tangent bundle. Let V be an open set in Rn. For a ∈ V , we will use
the notation Ta (or Ta(V )) for Dera, in view of our comments in §§§1.3.5 above.
We also write

(2.1.1) T (V ) :=
⋃
a∈V

Ta(V ).
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The union is clearly a disjoint union for Ta ∩ Tb = ∅ if a 6= b. We therefore have
a map $ = $V : T (V ) → V given by $(D) = a if D ∈ Ta. We point out that
Ta = $−1(a). The tangent bundle of V is the pair (T (V ), $V ). We often omit the
projection $ and simply call T (V ) the tangent bundle of V .

2.2. Vector fields. A map X : V →
⋃
a∈V Ta such that X(a) ∈ Ta for a ∈ V is

called a vector field on V . A vector field X is clearly the same as a section of $,
i.e. X is a map such that $◦X = 1V , where 1V is the identity map on V . Now a
special feature of open sets in Rn (versus open sets in “manifolds”) is that we have
a bijective map

(2.2.1)
T (V ) −→∼ V ×Rn

D 7−→ ($(D),µD)

where µD = (µ1, . . . , µn) is the unique vector in Rn such that D =
∑
i µiDi,a (see

(1.1.7)). In fact the diagram

(2.2.2) T (V )

$

��4444444444444 ˜
(2.2.1)

// V ×Rn

π

����������������

V

commutes, where π = πV : V ×Rn is the projection on to V . It is clear from the
diagram above that sections of $ are in bijective correspondence with sections of
π. Now, it is an easy set theoretic fact that if A and B are non-empty sets and
p : A×B → A is the projection to the first factor, then sections of p are completely
determined by maps f : A→ B, via the “graph” of f . In other words f determines
the section σ of p given by a 7→ (a, f(a)) and a section σ of p determines a map
f : A → B given by f = q ◦σ, where q is the projection A × B → B. These two
processes are clearly inverses of each other.

Let σX : V → V ×Rn be the section of π corresponding to the section X of $.
In view of what we just said, a vector field X on V corresponds to a map

(2.2.3) µX : V → Rn

(and vice-versa) in such a way that

(2.2.4) σX = (1V ,µX).

More explicitly, if one unravels all the definitions involved, µX is described as
follows. If Da = X(a) for a point a in V , and Da =

∑n
i=1 µX,i(a)Di,a in the

representation of Da in the form (1.1.7), then µX(a) = (µX,1(a), . . . , µX,n(a)).

Definition 2.2.5. We say X is a continuous vector field if µX is continuous. We
say it is a C k vector field if µX is in C k(V,Rn). We say it is a smooth vector field
if µX ∈ C∞(V,Rn).
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2.3. Change of co-ordinates for vector fields. As in §§1.3, let ψ : V → W be
diffeomorphism, with W an open subset of Rn. To reduce notational clutter, we
write π for both projections V ×Rn → V and W ×Rn → W . Similarly we write
$ for both $V : T (V )→ V as well as for $W : T (W )→W .

The linear isomorphismsψ∗(a) : Dera −→∼ Derψ(a) of (1.3.2) gives us a bijective
map (the isomorphism symbol below, for the moment, denotes an isomorphism of
sets)

(2.3.1) ψ∗ : T (V ) −→∼ T (W )

given by D 7→ ψ∗($(D))(D) for D ∈ T (V ).
We clearly have a commutative diagram

(2.3.2)

T (V )

$

��

ψ̃∗

// T (W )

$

��
V

ψ̃
// W

We also have isomorphisms (of sets) T (V ) −→∼ V ×Rn and T (W ) −→∼ W ×Rn

described in (2.2.1). Let ψ× : V ×Rn −→∼ W ×Rn be the bijective map induced
by ψ∗, i.e. ψ× is the unique map making the following diagram commute:

(2.3.3)

T (V )

(2.2.1)

˜

��

ψ̃∗

// T (W )

(2.2.1)˜

��
V ×Rn

ψ̃×

// W ×Rn

From Theorem 1.3.4 it is clear that

(2.3.4) ψ×(a,µ) = (ψ(a), (Jψ)(a)(µ))

and hence we get

Proposition 2.3.5. The map ψ× is a C∞ map.

Proof. From (2.3.4) we have ψ× = (ψ ◦π, Jψ(π)(π2)), where π2 : V × Rn → Rn

is the projection to the second factor. Since ψ, Jψ, π, and π2 are all C∞, we are
done. �

Another consequence of (2.3.4) is the following change of coordinates theorem
for a vector field.

Proposition 2.3.6. Let X : V → T (V ) be a vector field and µX : V → Rn and
µψ∗X : W → Rn be the maps given by (2.2.4). Then

µψ∗X = ψ′(π)µX = Jψ(π)µX .

The following is an obvious corollary of Proposition 2.3.6 and Definition 2.2.5.

Corollary 2.3.7. If X is a C k vector field on V , then ψ∗X is a C k vector field
on W .
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The situation is summarised in the following commutative diagram:

(2.3.8)

V ×Rn

ψ̃×

//

π

))

W ×Rn

π

uu

T (V )
ψ̃∗

//

$

��

(2.2.1) ˜

OO

T (W )

$

��

(2.2.1)

˜ OO

V
ψ̃

// W

2.3.9. Change of notation. Let k be a non-negative integer. Let X : V → T (V )
be a C k vector field. We will use the symbol Xa for the tangent vector X(a) for
a ∈ V . For f ∈ C∞(V ), we write X(f) for the map

(2.3.9.1)
X(f) : C∞(V ) −→ C k(V )

a 7−→Xa(f).

We leave it to the reader to check that our assertion that X(f) ∈ C k(V ) is true.
One has to use the fact that Di(f) ∈ C∞, i = 1, . . . , n, where Di is the smooth
vector field a 7→ Di,a, i.e. Di = ∂

∂xi
.

2.3.10. Tweaks. Since Di(f) makes sense for f ∈ C r(V ) for r ≥ 1, if X is a C k

vector field on V , and f ∈ C r(V ) for some r ≥ 1, one can make sense of X(f) in
this case too. Since Di(f) ∈ C r−1(V ), i = 1, . . . , n, X(f) will be in C j(V ) where
j = min (k, r − 1). It is easy to see that if this property is true for members of cover
consisting of co-ordinate charts, then it is true for any co-ordinate chart.

3. Tangent vectors and vector fields on manifolds

Look up the definition of a differential manifold from any book. (This was Prob-
lem 6 of HW 7 of ANA2.) What follows is an obvious generalisation of everything
we have discussed. In what follows, a manifold will mean a smooth (i.e. C∞) dif-
ferential manifold. An important definition is the definition of a C k map on a
differential manifold M . For such an M , a map f : M → R s said to be C k if we
can find an atlas A = {(U,ϕ)} of M such that if (U, ϕ) ∈ A with ϕ(U) = V (V
an open subset of some Euclidean space), then the map f |U ◦ϕ−1 : V → R is in
C k. It is easy to see that when this happens, if (U,ϕ) is a co-ordinate chart of M ,
whether in A or not, then f |U ◦ϕ−1 : V → R is in C k. In the same way, if W is
any open set of a Euclidean space, it makes sense to talk of a C k map from M to
W . Finally, if N is also a differential manifold, then it makes sense to talk about a
C k map from M to N .2

In view of these comments, given a ∈ M , we have the R-algebra C∞a of germs
of C∞ functions at a and the space of derivations Dera = Dera(M) of derivations
at a. If D ∈ Dera, then D is an R-linear map D : C∞a → R such that D(fg) =
f(a)Dg+ g(a)Df . I leave it to you to make sense of f(a) and g(a) for germs f and
g at a.

2See if you can make these generalisations without looking up a book.
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3.1. Tangent spaces and tangent bundles on a manifold. . Let M be a
manifold of dimension n. For a point a ∈ M , the tangent space of M at a is the
R-vector space Dera. It is also denoted Ta, or as Ta(M). As we saw earlier, if M is
an open subset of Rn, this agrees with the space of velocity vectors at a, justifying
the definition.

The tangent bundle of M is the pair (T (M), $) where

(3.1.1) T (M) =
⋃
a∈M

Ta(M)

and $ : T (M)→M is the map which sends D ∈ Dera = Ta to a.
Let (Ui, ϕi : Ui −→∼ Gi), i = 1, 2 be two co-ordinate charts of M . Note that this

means that each Gi is an open subset of Rn(recall, dimM = n). From (2.2.1) we
see that we have a set-theoretic bijection T (Ui) −→∼ Gi ×Rn. Let U = U1 ∩ U2,
V = ϕ1(U) ⊂ G1, and W = ϕ2(U) ⊂ G2. Then we have set-theoretic bijections
T (U) −→∼ V ×Rn and T (U) −→∼ W ×Rn, again given by (2.2.1). Moreover, we
have a transition function, a diffeomorphism

ψ : V −→∼ W.

From the commutative diagram (2.3.3), it is easy to see that we have a commutative
diagram

(3.1.2)

T (U)˜
zzuuuuuuuuu ˜

$$JJJJJJJJJ

T (V )

(2.2.1)

˜

��

ψ̃∗

// T (W )

(2.2.1)˜

��
V ×Rn

ψ̃×

// W ×Rn

From the above considerations, it is clear that T (M) can also be given a manifold
structure. To begin with, for each coordinate chart (U, ϕ) of M , the set-theoretic
bijection T (U) −→∼ ϕ(U) ×Rn gives the structure of a differentiable manifold on
T (U), and the diagram (3.1.2) shows that these differentiable structures are com-
patible and patch to give a structure of a differential manifold on T (M).

3.1.3. Exercise. Work out and justify the above statements. Show that the map
$ : T (M)→M is C∞.

Definition 3.1.4. A C k vector field on M is a C k section X : M → T (M) of $.
In other words, the map X is a C k map, and $◦X = 1M .

The following commutative diagram may help.

M �
� X //

FFFFFFFFF

FFFFFFFFF T (M)

$

��
M
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