
MU2202 Ordinary Differential Equations
Semester 2, 2020-21

Mid-Term Exam Solutions

Basic problems. Solve the following. If no initial values are given, give the general solu-
tion. Otherwise follow the intsructions.

1) x2
d2y

dx2
+ 3x

dy

dx
− 35y = x, x > 0.

Solution: After using the transformation t = lnx, the DE can be re-written in terms of
t as

..
y+2

.
y−35y = et. The complementary solution is yc = c1e

5t+c2e
−7t where c1 and c2

are arbitrary constants. Since et is not identically either e5t or e−7y, therefore a particular
solution will be of the form yp = Aet for some constant A. A straightforward compu-
tation shows that A = −1/32. Thus a general solution is y = c1x

5 + c2x
−7 − (1/32)x,

where the ci’s are arbitrary constants. �

2)
d4y

dt4
− 16y = −30et, y(0) = 3, y′(0) = 0, y′′(0) = 6, and y(3)(0) = −6.

Solution: The complementary solution is (with the ci’s arbitrary constants)

yc = c1e
2t + c2e

−2t + c3 cos (2t) + c4 sin (2t).

One can pick the form of a particular solution to be yp = Aet. A straightforward com-
putation shows that A = 2. The general solution is of the form y = yc + 2et. Working
out y, y′, y′′, y′′′, and solving the equations y′(0) = 0, y′′(0) = 6, and y(3)(0) = −6, we
see that the required solution is y = e−2t + 2et. �

3)
.
y = y(y − 1), y(0) = 2. Also give the maximal interval of existence for the IVP.

Solution: The equation is separable and we see that t =
∫
y(y − 1)−1dy, i.e. t =

ln|(y − 1)y−1| + C. Since our initial phase is y = 2, and the connected component
containing 2 of the the open set where vector field v(y) = y(y − 1) 6= 0 is (1,∞), we
see that t = ln((y − 1)y−1) +C, i.e. we can dispense with the absolute value sign in the
interval of interest to us. Doing the usual manipulations, we find that the solution is
y = 2

2−et . Examining the denominator, we see that the maximal interval of existence is

(−∞, ln 2). As an aside, note that as t approaches ω+ = ln 2, the solution approaches
∞, exactly as predicted by the theory (see Corollary1.1.3 of Lecture 6). �

One-parameter groups. Let v : R → R be the map v(x) = x3 − x, x ∈ R and set
U := (−1, 1), U+ := (1,∞), U− := (−∞,−1).

General Computations: For problems 4), 5) and 6) it is simpler to just first find the
solution of the DE

.
x = x3 − x when the initial state is x0. The same computations help

with all three problems. Note that the regular locus of v is Ωreg = R \ {−1, 0, 1} and hence
if x0 lies in any one the four connected components of Ωreg, then the solution with x0 as
the initial phase takes values in that interval (you do not have to mention this in your
solution, but I am putting it out there to help understanding).The DE is separable. We
have t =

∫
(x3 − x)dx. The relevant partial fraction decomposition is

1

x3 − x
=

1

2

1

x+ 1
− 1

x
+

1

2

1

x− 1
.

This gives

t = ln

{√
|x2 − 1|
|x|

}
− ln

{√
|x20 − 1|
|x0|

}
(∗)

1

https://www.cmi.ac.in/~pramath/DEQN21/Lectures/Lecture6.pdf
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For x0 /∈ {−1, 0, 1} we conclude that:

et =
|x0|√
|x20 − 1|

√
|x2 − 1|
|x|

. (†)

4) Find a one-parameter group of diffeomorphisms {gt} on U whose phase velocity field
is v|U . (“Find” means (a) give an explicit formula for gtx for x ∈ U and t ∈ R; (b)
show that gtx ∈ U for every x ∈ U ; and (c) argue that {gt} is a one-parameter group of
diffeomorphisms.)

Solution: If x0 ∈ (−1, 0) ∪ (0, 1) then |x20 − 1| = 1 − x20 and since x(t) will lie in this
set in the interval of existence if x(0) = x0, we also have |x2 − 1| = 1 − x2. Solving for
x from the equation (†), we get:

x =
x0√

(1− x20)e2t + x20
.

We have used the fact that x0/x = |x0/x| if x0 ∈ (−1, 0) ∪ (0, 1). Since v(0) = 0, we
know that if x0 = 0, then the unique solution to our DE is x ≡ 0. So the above formula
in fact works for all of U , including when x0 = 0. The denominator is never zero for
x0 ∈ U since 1 − x20 > 0 for x0 ∈ U . It follows that the interval of existence is R for
x0 ∈ U . Now define, for t ∈ R, g : R× U → U by the formula

g(t, x) =
x√

(1− x2)e2t + x2
.

It is clear that g is C 1. We have to check that gt(gsx) = gt+sx, where the notation is
as in the lectures and homework assignments. There are two ways from here, both easy.
The first way is to compute; in other words show that

gsx√
(1− (gsx)2)e2t + (gsx)2

=
x√

(1− x2)e2(t+s) + x2

where of course gsx = x√
(1−x2)e2s+x2

. This is surprisingly easy as many of you probably

discovered. The second way is to argue as you might for Problem 3) of HW 6. Since
that HW was not submitted, you are expected to give an argument in the exam if you
take that route. �

Note: Many of the things done here are not necessary to get full credit for the problem.
All you have to do is (a) write out the formula for gtx; (b) verify that your formula gives
the solution of the DE when the initial state is x and note that as a function of two
variables g is C 1; (c) either by computing or by arguing using uniqueness of solutions,
show that gtgs = gt+s. You do not have to tell us how you got to the formula for gtx.

https://www.cmi.ac.in/~pramath/DEQN21/HW/HW6.pdf
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5) Show that there is no one-parameter family of diffeomorphisms on U+ whose phase ve-

locity is v|U+ . [Hint: Suppose x0 ∈ U+, and θ∞ := ln
{
x0(x

2
0 − 1)−1/2

}
. Examine the

solution of the IVP (
.
x = v(x), x(0) = x0), as t→ θ∞.]

Solution: Note that a necessary condition for a one-parameter group with phase field v
to act on U+ is that the maximal intervals of existence for the IVP’s

.
x = v(x), x(0) = x0,

be R for x0 ∈ U+. Observe that θ∞ is positive, since
√
x20 − 1 < x0 when x0 ∈ U+.

Now consider the relation (∗) above. If we let t↗ θ∞ then clearly

ln

{√
x2 − 1

x

}
↗ 0.

This implies
x2 − 1

x2
↗ 1, i.e. x ↗ ∞. Thus the maximal interval of existence of the

IVP in this case is not R, and this is clearly a necessary condition for a one-parameter
group to exist.

There is another way to approach the problem. It is straightforward from (†) to see
that the solution to the IVP

.
x = v(x), x(0) = x0 when x0 /∈ {−1, 0, 1} is

x =
x0√

|(1− x20)e2t + x20|
. (♠)

The denominator is never zero if |x0| < 1 as is easily checked (if f(t) = (1− x20)e2t + x20,
then f ′(t) = 2(1 − x20)e2t, whence f ′(t) > 0 when |x0| < 1, i.e. f is increasing in this
case . . . ). However, if |x0| > 1, then (1 − x20)e

2t + x20 = 0 has a solution, namely

t = 1
2 ln
{

x20
x20−1

}
, i.e. t = θ∞. As an aside, it is worth pointing out that (♠) gives us

solutions in all cases, including the case when x0 ∈ {−1, 0, 1}, as is easily checked. �

6) Show that the solution of (
.
x = v(x), x(0) = −x0) is the negative of the solution of

(
.
x = v(x), x(0) = x0). Is there a one-parameter family of diffeomorphisms on U− whose

phase velocity is v|U−?

Solution: We will use the fact that v(−x) = −v(x) for our v. Let ϕ : (ω−, ω+)→ R be
the maximal solution of

.
x = v(x), x(0) = −x0. Let ψ : (ω−, ω+) → R be given by the

formula ψ(t) = −ϕ(t). Then
.
ψ(t) = − .

ϕ(t) = −v(ϕ(t)) = v(−ϕ(t)) = v(ψ(t)). Thus ψ
is a solution of the DE

.
x = v(x). Moreover, ψ(0) = −ϕ(0) = −x0. This solves the first

part of the problem. For the second part note that U− = {x ∈ R | −x ∈ U+}. If a one-
parameter group of diffeomorhisms {gt} with phase field v|U− acts on U−, then we have
a one parameter group of diffeomorphisms {ht} acting on U+, where htx = −gt(−x),
x ∈ U+, t ∈ R. However we know from the previous problem that this is not possible. �
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Maximal interval of existence. In what follows we regard the space Mm,n(R), the space
of m × n real matrices, as a Euclidean space in the usual manner. As usual, if m = n we
write Mn(R) instead of Mn,n(R). The set of invertible n× n matrices is, as usual, denoted
GL(n, R), and is an open subset of the Euclidean space Mn(R), for it is the locus of points
on which the continuous function det : Mn(R) → R does not vanish, where for an n × n
matrix A, det(A) denotes the determinant of A.

7) Let U be an open subset of Rn and v : U → Rn a C 1 map. Suppose there exists ε > 0
such that for every a ∈ U the IVP

.
x = v(x), x(0) = a (∗)a

has a solution on (−ε, ε). Show that the maximal interval of existence for (∗)a is R for
every a ∈ U .

Solution: Let a ∈ U , and let the maximal interval of existence for (∗)a be (ω−, ω+) =
(ω−(a), ω+(a)). Suppose ω+ < ∞. Let τ = ω+ − 1

2ε and b = ϕa(τ). (Since the
length of (ω−, ω+) is at least 2ε, τ is in the interval of existence for (∗)a and so b makes
sense.) Let ψ be the U -valued map defined in a neighbourhood of τ by the formula
ψ(t) = ϕb(t− τ). Then ψ exists (at least) on (τ − ε, τ + ε) and is a solution to the IVP
.
x = v(x), x(τ) = b. On the other hand so is ϕa. Since v is C 1 it is locally Lipschitz
and hence by local uniqueness, ψ and ϕa agree on the intersection of their domains.
This means ϕa can be extended to (ω−, τ + ε) = (ω−, ω+ + 1

2ε). This is a contradiction,
whence ω+ =∞. Similarly ω− = −∞. �

8) Fix A ∈ Mn(R), and let v : GL(n, R) → Mn(R) be the map given by v(S) = AS,
S ∈ GL(n,R). For S0 ∈ GL(n, R), let (∗)S0 denote the IVP

.
S = v(S), S(0) = S0. (∗)S0

Show, without using exponentials, that for every S0 ∈ GL(n, R), the maximal interval of
existence for (∗)S0 is R. [Hint: Relate solutions of (∗)S0 with solutions of (∗)In , where
In is the identity n× n matrix. Use Problem 7).]

Solution: Let ε be a positive number such that (−ε, ε) is an interval of existence for
(∗)In . Let J be an interval containing 0 and ϕ : J → GL(n,R) a map. It is easy to see
that ϕ is a solution of (∗)In if and only if ψ : J → GL(n,R) given by ψ(t) = ϕ(t)S0, is a

solution of (∗)S0 . Indeed
.
ψ(t) =

.
ϕ(t)S0 for t ∈ J , and hence to say that

.
ψ(t) = A(t)ψ(t),

t ∈ J , is the same as saying
.
ϕ(t)S0 = A(t)ϕ(t)S0, t ∈ J , and since S0 is invertible,

this is equivalent to saying
.
ϕ(t) = A(t)ϕ(t), t ∈ J . Moreover, ψ(0) = S0 if and only if

ϕ(0) = In. Thus every interval of existence of (∗)In is an interval of existence of (∗)S0 .
It follows that (−ε, ε) is an interval of existence for (∗)S0 for every S0 ∈ GL(n, R). By
Problem 7) we are done. �
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Linear Differential Equations. Let I be an interval (for definiteness assume I is open,
though this condition is not necessary). Let A : I →Mn(R) and g : I → Rn be continuous
functions. For (τ,x) ∈ I ×Rn let ϕ

(τ,x)
: I → Rn be the unique solution to

.
y = Ay + g, y(τ) = x (†)(τ,x).

Let F : I ×Rn × I → Rn be the map given by the formula:

F (τ,x, t) = ϕ
(τ,x)

(t), (τ,x, t) ∈ I ×Rn × I.

Let ψ1, . . . ,ψn be a basis of solutions for the homogeneous differential equation
.
y = Ay

and M the n × n matrix of functions whose ith column is ψi for i = 1, . . . , n. The aim
of the next two exercises is to show that F is C 1. Note that the partial derivative of F
with respect to t exists and by definition is

.
ϕ
(τ,x)

(t) at (τ,x, t) and hence is continuous, for
.
ϕ(τ,x)(t) = A(t)ϕ

(τ,x)
(t) + g(t).

General Computations: We know that solutions of the homogeneous equation
.
y = Ay

are all of the form t 7→M(t)c where c is a constant vector in Rn, since solutions are linear
combinations of ψ1, . . . ,ψn. In fact the representation t 7→M(t)c is the unique solution to
the IVP

.
y = Ay, y(τ) = M(τ)c. If we set Y c(t) = M(t)M(τ)−1x, then Y c is the solution

of the IVP
.
y = Ay, y(τ) = x. By the technique of variation of parameters we know that

Y p : I → Rn given by Y p(t) = M(t)
∫ t
τ M(s)−1g(s)ds is a particular solution of

.
y = Ay+g

and is such that Y p(τ) = 0. It is clear that ϕ(τ,x) = Y c +Y p. In other words, we have the
formula

F (τ,x, t) = M(t)M(τ)−1x+M(t)

∫ t

τ
M(s)−1g(s)ds. (∗∗)

9) Show that for fixed τ and t, F (τ,x, t) is C 1 with respect to x = (x1, . . . , xn) by showing
that that for i = 1, . . . , n,

∂F

∂xi

∣∣∣
(τ,x,t)

is the unique solution to the IVP
.
ζ = Aζ, ζ(τ) = ei

where ei, i = 1, . . . , n form the standard basis of Rn.

Remark: In particular the partial derivatives of F with respect to the variables x1, . . . , xn
do not depend upon x = (x1, . . . , xn). The DE involving ζ is a special case of the equa-
tion of variations associated to a DE, something we will study later in the semester.

Solution: Linear transformations are C∞ and since τ and t are constant for this prob-
lem, F is (as far as x is concerned) a linear transformation plus a constant vector (see

(∗∗)). Applying
∂

∂xi
to (∗∗) we get

∂F

∂xi

∣∣∣
(τ,x,t)

= M(t)M(τ)−1ei.

This is exactly the solution to the IVP
.
ζ = Aζ, ζ(τ) = ei.
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10) Show that the partial derivative of F with respect to τ exists on I×Rn×I as a continuous
function and is given by the formula

∂F

∂τ

∣∣∣∣∣
(τ,x,t)

= −M(t)M(τ)−1
.
ϕ(τ,x)(τ).

[Hint: Use the fact that
.
M = AM and the fact that ifB : I → GL(n, R) is differentiable,

then
d

dt
(B−1) = −B−1

.
BB−1, a fact which can easily be deduced by differentiating the

identity BB−1 = In. You can use these two facts without proof.]

Solution: Since ψi, i = 1, . . . , n are C 1, M is also C 1. In particular the map τ 7→M(τ)
is C 1, whence so is the map τ 7→ M(τ)−1. Further, by the fundamental theorem of

Calculus, for fixed t, the map τ 7→
∫ t
τ M(s)−1g(s)ds = −

∫ τ
t M(s)−1g(s)ds, is C 1. The

derivative of τ 7→ M(τ)−1 with respect to τ is (from the hint given) the map τ 7→
M(τ)−1

.
M(τ)M(τ)−1. Since

.
M = AM , we get that this derivative is τ 7→M(τ)−1A(τ).

On the other hand, for fixed t, the derivative of the map τ 7→ −
∫ τ
t M(s)−1g(s)ds is

τ 7→ −M(τ)−1g(τ). Examining (∗∗), and in view of the above observations, we see that
F is differentiable with respect to τ and

∂F

∂τ

∣∣∣∣∣
(τ,x,t)

= −M(t)M(τ)−1A(τ)x−M(t)M(τ)−1g(τ).

From here the required result follows. �
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