
MU2202 Ordinary Differential Equations
Semester 2, 2020-21

Final Exam

April 26, 2021

Do any five problems out of the six below. Each problem is worth 10 marks. The exam is
open book. Please upload a front sheet with your name and roll number on the
top right corner. Leave enough room for the markers to make a table in which
they will enter marks.

Differential equations with R as the phase space.

1) Let Ω = (0, ∞)×R ⊂ R2 and for (τ, a) ∈ Ω, let (∆)(τ, a) be the IVP

(∆)(τ, a)
.
x =

1 + x2

t
, x(τ) = a.

As usual let ϕ(τ, a) be the solution of (∆)(τ, a) and J(τ, a) the maximal interval of exis-
tence of ϕ(τ, a).
(a) Show that for (τ, a) ∈ Ω,

J(τ, a) =
(
τ exp {− π

2 − arctan (a)}, τ exp {π2 − arctan (a)}
)
.

Useful fact: The function arctan takes values in (−π
2 ,

π
2 ).

(b) Let, as usual, Ω̃ be the open set in R3 consisting of points (t, τ, a) such that

(τ, a) ∈ Ω and t ∈ J(τ, a). For (t, τ, a) ∈ Ω̃, find a formula for ϕ(τ, a)(t). Verify

directly from your formula that (t, τ, a) 7→ ϕ(τ, a)(t) is C 1 on Ω̃. You may use the
fact that certain common functions like t 7→ ln t, t 7→ tan t etc., are C∞ in their
natural domains of definition. Do not quote results from the course material to
show that the map is C 1.

(c) Fix τ = τ0 ∈ (0, ∞). For (t, τ0, x) ∈ Ω̃ let

β(t, x) =

[
2 tan{ln (t/τ0) + arctan (x)}

t

]
.

For (τ0, x) ∈ Ω consider the linear homogenous initial value problem (EV) on the
interval J(τ0, x):

(EV)
.
z = β(t, x)z, z(τ0) = 1.

To clarify, the unknown function to be found is z. Find the solution ψ : J(τ0, x)→ R�

of (EV) using a your formula for ϕ(τ, x)(t) in part (b). Justify your answer without
substituting your proposed solution into the equation (EV). You may quote results
from the course material.

Solution: It is clear 1
1+x2

.
x = 1

t , whence
∫ t
τ

1
1+y2

dy
dsds =

∫ t
τ

1
sds, i.e.

∫ x
a

dy
1+y2

=
∫ t
τ

1
sds.

Hence arctan (x(t))− arctan a = ln t− ln τ . This gives us (writing ϕ(τ, a)(t) for x(t)),

arctanϕ(τ, a)(t) = ln
t

τ
+ arctan a.

In other words
ϕ(τ, a)(t) = tan

{
ln ( tτ ) + arctan (a)

}
.

Part (a): We have arctanϕ(τ, a)(t) = ln t
τ + arctan a, which means

−π
2
< ln

t

τ
+ arctan a <

π

2
.

Part (a) is immediate.

1



2

Part (b): Since ϕ(τ, a)(t) = tan
{

ln ( tτ ) + arctan (a)
}

, it is clear that the map F : Ω̃ → R

given by

F (t, τ, x) = ϕx(t) = tan
{

ln ( tτ ) + arctan (x)
}

is C 1 on Ω̃. Indeed t/τ is C 1 on (0,∞) × (0,∞), arctan a is C 1 on R, and tan is C 1 on
(−π

2 ,
π
2 ). This gives part (b).

Part (c): Let v(t, x) = 1+x2

t for (t, x) ∈ Ω. Clearly v is C 1. In fact it is C∞. Dv(t, x) =

(−1+x2

t2
, 2xt ). The second component is what we denoted in our lectures by D2(t, x). (See

§§ 3.1, especially (3.1.1) of Lectures 21-22.) Thus

D2(t, x) =
2x

t
.

If we write A(t, x) = D2(t, ϕ(τ0,x)(t)) then it is obvious that

A(t, x) = β(t, x).

We know from the Remark below Theorem 3.2.2 of Lectures 21-22, and also from the proof
of loc.cit., that

ζ(t) = ζ(t, x) :=
∂F

∂x

∣∣∣
(t,τ0,x)

is the solution of the equation of variation (EV). Now

ζ(t) =
∂F

∂x
=

sec2 { ln ( tτ0 ) + arctanx}
1 + x2

.

The right side of the above gives us the required solution of (EV). �

Vectors and vector fields on R3.

2) Let U be an open set in R3 homeomorphic to an open ball in R3. Let u1, u2 and v be
smooth nowhere vanishing vector fields on U such that u1×u2 is also nowhere vanishing
on U and such that the inner products 〈u1, v〉 and 〈u2, v〉 vanish identically on U .
Suppose further that curlu1 = curlu2 = 0 on U. Given this data, and given a ∈ U ,
what would be your strategy for solving the initial value problem

.
x = v(x), x(0) = a in

a neighbourhood of the time point 0 (not necessarily on the entire interval of existence)?
Write out your procedure carefully, and prove that your procedure ends with a solution
of the given IVP. You should make use of the properties of u1 and u2. You may give
references to course notes, but you should make an effort to write out the statement you
are using (along with the reference).

Solution: Let f : U → R and g : U → R be the potentials of u1 and u2. Since u1 ⊥ v,
we see that 〈∇f,v〉 = 0. Similarly 〈∇g,v〉 = 0. Thus by definition of first integrals,
f and g are first integrals for v on U (see Section 1.1 of Lecture 14). Let F = (f, g).

Then F is a smooth map from U to R2. It is clear that JF =
[
ut
1

ut
2

]
, where (−)t

denotes the transpose operation. Now clearly the components of u1×u2 are ± the 2× 2
minors of JF , and since u1×u2 is nowhere vanishing on U , JF has rank 2 everywhere
on U . It follows from the implicit function theorem that F−1(c) is a one-dimensional
smooth manifold for every c ∈ F (U). Let c = F (a) and C the connected component of
F−1(c) containing a. For each p ∈ C there is neighbourhood U and a diffeomorphism
ψ : U −→∼ I into an open interval I, and the inverse of ψ gives a parameterisation of C

https://www.cmi.ac.in/~pramath/DEQN21/Lectures/Lecture21and22.pdf
https://www.cmi.ac.in/~pramath/DEQN21/Lectures/Lecture21and22.pdf
https://www.cmi.ac.in/~pramath/DEQN21/Lectures/Lecture14.pdf
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in U . One can re-parameterise as in the proof of Theorem 1.2.1 of Lecture 16 to get
a solution of

.
x = v(x), x(0) = p. Setting p = a we get a solution as required. The

maximal one can be obtained by patching as shown in loc.cit. �

3) Let S be the sphere in R3 whose equation is x2 + y2 + z2 = 16. Consider the family of
curves {Cν}ν>0 on S given by the intersection of S with the surface xy = νz as ν varies
in (0,∞). Let p = (α, β, γ) be a point on S in the first octant (i.e. all the co-ordinates
of p are positive). Write down an IVP (with v nowhere vanishing on S ∩ (first octant))

.
x = v(x), x(0) = p

such that the solution ϕ takes values in S and such that its trajectory intersects each
Cν it encounters in an orthogonal way (see Figure 1 and Figure 2 below). Justify your
answer. You do not have to solve the IVP. Hint: Use cross-products. You may have to
use them more than once.

Solution: Taking the gradient of the function x2 + y2 + z2, we see that 2(x, y, z) is
orthogonal to S at each point (x, y, z) of S. Thus the vector field u = (x, y, z) is
orthogonal to S at the points of S. In the first octant let f be the function given by

g(x, y, z) =
xy
z . The level surface Sν := g−1(ν) intersects S in the curve Cν . We wish to

make sure that “orthogonal to Cν” makes sense in the first octant, and for that we need
to check that Cν is a 1-manifold in the first octant. It is enough to check that u×∇g is
non-zero on every point of Cν in the first octant. Note that if this is so, this cross product
being orthogonal to both ∇g and to the gradient of x2 + y2 + z2 must be tangential
to both Sν and S, whence is a tangent vector of Cν . We can work with u∗ = z2∇g
rather than ∇g. A simple calculation shows that u∗ = z2∇g(p) = (yz, xz,−xy). Let
w = u×u∗. An easy computation gives

w =

−x(y2 + z2)
y(z2 + x2)
z(x2 − y2)

 .
Note that w 6= 0 in the first octant, and hence Cν is smooth in the first octant. We
want a vector field v which when restricted to Cν , is orthogonal to it, and not tangential
to it. Therefore w is not the vector field we want for our IVP. Moreover we would like
this vector field v to be tangential to S when restricted to S. Vectors tangential to
S at p ∈ S are the ones orthogonal to u(p). It is clear that u×w satisfies both our
requirements. So set v = u×w. One checks easily that

v =

 −yz(y2 + z2)
−zx(z2 + x2)

xy(x2 + y2 + 2z2)

 .
With v as above and p a point on S in the first octant, we see that the phase curve of
.
x = v(x), x(0) = p, is orthogonal to every Cν it encounters. �

Stability. Let v : U → Rn be a locally Lipschitz vector field on an open subset U of Rn.
For a ∈ U , let ϕa be the solution of

.
x = v(x), x(0) = a and J(a) the maximal interval

of existence of ϕa. Write J>0(a) for J(a) ∩ [0, ∞). Let Γ be the image of an embedding
of the unit (n − 1)-sphere Sn−1 into U via a continuous map (embedding means that the
map Sn−1 → U is injective). It is well known that Rn r Γ has exactly two connected
components, a bounded component R, and an unbounded component R′. Moreover the
closure of R (resp. R′) in Rn is the union of R (resp. R′)and Γ. You may assume this
theorem, which is a generalisation of the Jordan Curve Theorem. See Figure 3 below.

https://www.cmi.ac.in/~pramath/DEQN21/Lectures/Lecture16.pdf
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4) With the above notations, suppose R ⊂ U . Let x0 ∈ R be an equilibrium point of
v. Denote the flow on U determined by v by {gt}. In other words, gtx is defined for
t ∈ J(x) and gtx = ϕx(t) for t ∈ J(x). Let F : U → R be a continuous function such
that F (x0) < F (x) for all x ∈ U r {x0}. Let γ be the infimum of F on Γ.

(a) Suppose x ∈ R is such that F (x) < γ and such that t 7→ F (gtx) is a non-increasing
function on J>0(x). Show that gtx ∈ R for all t ∈ J>0(x). Show also that J>0(x) =
[0, ,∞).

(b) Suppose t 7→ F (gtx) is a non-increasing function on J>0(x) for every x ∈ R. Show
that there is an open ball B centred at x0, B ⊂ R, such that if x ∈ B, then
J>0(x) = [0, ∞) and gtx ∈ R for all t ∈ J>0(x).

Solution: Part (a): If there is a point s ∈ J>0(x) such gsx /∈ R, then for some
τ ∈ J>0(x), gτx ∈ Γ. This means F (gτx) ≥ γ, contradicting the fact that F (x) < γ
and t 7→ F (gtx) is non-increasing in t for t ∈ J>0(x). Thus gtx ∈ R for all t ∈ J>0(x).

Let R be the closure of R in Rn. We know from what we were told that R = R ∪ Γ.
Since R is bounded R is compact. It follows that for every T > 0, the set KT = [0, T ]×R
is compact, and hence (t, gtx) must exit KT as t ↑. Since gtx ∈ R for all t ∈ J>0(x),
it follows that (t, gtx) exits KT from {T} × R. Thus T ∈ J>0(x). This proves that
J>0(x) = [0, ∞).
Part (b): Since F is continuous, there exists δ > 0 such that for all x ∈ B(x0, δ), we
have

|F (x)− F (x0)| < 1
2(γ − F (x0).

Now x0 is the unique minima of F and hence |F (x)− F (x0)| = F (x) − F (x0). The
above inequality then means that F (x) < 1

2(γ + F (x0)) < γ for all x ∈ B(x0, δ). By
part (a), we are done. �

5) Let F : U → R and γ be as in problem 4). Let R ⊂ U . Suppose t 7→ F (gtx) is a strictly
decreasing function on J>0(x) for every x ∈ Rr {x0}. Show that if x ∈ R is such that
F (x) < γ then limt→∞ g

tx = x0.

Solution: If x = x0 there is nothing to prove since in that case gtx = gtx0 = x0 for
all t ∈ R. So assume x 6= x0. By the previous problem, J>0(x) = [0, ∞). Let β be the
infimum of F (gtx) as t varies in [0, ∞). Then, as F (gtx) is a strictly decreasing function
of t in [0, ∞) therefore F (x0) ≤ β < γ. By definition of infimum, we have a sequence of
time points

0 = t0 < t1 < · · · < tk < . . . ↑ ∞
such that F (gtkx) ↓ β as k ↑ ∞. Since {gtkx} is a sequence in the compact set R = R ∪ Γ,
it has a convergent subsequence, and by replacing {gtkx} by this convergent subsequence,
if necessary, we assume that {gtkx} is convergent. Let

x∗ = lim
k→∞

gtkx.

By the continuity of F , we have F (x∗) = β < γ, whence x∗ ∈ R. Again by part (a) of the
previous problem, this means J>0(x

∗) = [0, ∞), whence gtx∗ makes sense for all t ∈ [0, ∞)
and gtx∗ ∈ R for all t ≥ 0.

Consider the sequence {gtk+1x}. Since gtk+1x = g1gtkx, and since g1 : U → U is contin-
uous, we have
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lim
k→∞

gtk+1x = g1x∗.

In particular, since F (gtk+1x) < F (gtkx) we have, on taking limits

F (g1x∗) ≤ F (x∗).

Now F (gtk+1x) ↓ F (g1x∗), whence, given η > 0 we can find K ≥ 0 such that

F (g1x∗) < F (gtk+1x) < F (g1x∗) + η (k ≥ K).

There exists l ≥ 0 such that tl > tK + 1. We therefore have the sequence of inequalities

F (g1x∗) ≤ F (x∗) < F (glx) < F (gtK+1x) < F (g1x∗) + η.

Thus, for every η > 0 we have

F (g1x∗) ≤ F (x∗) < F (g1x∗) + η.

This means F (g1x∗) = F (x∗). One of our hypotheses is that t 7→ F (gtx) is strictly
decreasing on [0, ∞) for x ∈ Rr {x0}. Hence x∗ = x0.

Let ε > 0 be given. We have to find T ≥ 0 such that gtx ∈ B(x0, ε) for all t ≥ T . We
choose ε so small that the closed ball B(x0, ε) ⊂ R. With the bounding sphere S(x0, ε)
playing the role of Γ, part (b) of the previous problem tells us that there is an open ball B
centred at x0 such thatB ⊂ B(x0, ε) and if y ∈ B, then J>0(y) = [0, ∞) and gty ∈ B(x0, ε)
for all t ≥ 0. Now there exists K ≥ 0 such that gtkx ∈ B for all k ≥ K. Then from our just
made observation, with y = gtKx, we see that gt+tKx = gt(gtKx) ∈ B(x0, ε) for all t ≥ 0.
Setting T = tK , this means

gtx ∈ B(x0, ε) (t ≥ T ).

Thus limt→∞ g
tx = x0, as required. �

Miscellaneous.

6) Let Ω be an open subset of R × Rn and v : Ω → Rn a map which is Lipschitz in the
second variable. Let (τ, a) be a point in Ω, ϕ0 the solution of the initial value problem
.
x = v(t, x), x(τ) = a, and J the maximal interval of existence of ϕ0. Let {vm} be a
sequence of continuous Rn-valued functions on Ω converging uniformly to v. Suppose
we have a closed interval I = [a, b] contained in J with τ ∈ I such that each of the
differential equations

.
x = vm(t,x) has a solution ϕm on I such that the sequence {ϕm}

satisfies limm→∞ϕm(τ) = ϕ0(τ). Show that ϕm converges to ϕ0 uniformly on I as
m→∞.

Solution: Let L be the Lipschitz constant for v. Let ε be a positive real number. There
exists a positive integer M such that for every (t, x) ∈ Ω we have ‖vm(t, x)− v(t, x)‖ < ε
whenever m ≥ M . The integer M depends only on ε and not on (t, x). For t ∈ I and
m ≥M we then have

‖ .ϕm(t)− v(t, ϕm(t))‖ = ‖vm(t, ϕm(t))− v(t, ϕm(t))‖ ≤ ε.
Thus for m ≥ M , ϕm is an ε-approximate solution of the DE

.
x = v(t, x). Applying the

fundamental estimate, we see that

‖ϕm(t)−ϕ0(t)‖ ≤ ‖ϕm(τ)− a‖eL(b−a) +
ε

L

(
eL(b−a) − 1

)
,
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for m ≥ M and for all t ∈ I. Since limm→∞ϕm(τ) = ϕ0(τ) = a, there exists M ′ ≥ 1 such
that ‖ϕm(τ)− a‖ < ε for m ≥M ′. Letting N be the maximum of M and M ′ we see that

‖ϕm(t)−ϕ0(t)‖ ≤ ε
(
eL(b−a) + L−1(e(b−a) − 1)

)
(m ≥ N ; t ∈ I).

Since N does not depend upon t ∈ I, this proves the uniform convergence assertion. �

Below are three pictures. The first two relate to problem 3). The last one relates to
Problems 4) and 5)

Figure 1. The curve Cν (with ν = 3) realised as the intersection of S with
the hyperbolic paraboloid xy = 3z.
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Figure 2. Some members of {Cν}. You have been asked to write an au-
tonomous IVP whose initial phase is on the first octant and on the sphere
(e.g. the point shown in the picture), such that the trajectory of its solution
intersects the members of {Cν} orthogonally. The family {Cν} is such that
Cν approaches the circle of radius 4 centred at 0 on the xy-plane as ν →∞.

Figure 3. Γ is the image of an embedding of Sn−1 into Rn.
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