QUIZ 4

Date: March 29, 2021

1) Let I be an open interval in \mathbf{R} , (τ, \mathbf{a}) a point in $I \times \mathbf{R}^n$, and $A: I \to M_n(\mathbf{R})$ a continuous function. Show using the *fundamental estimate* (see Problem 8, HW 4) that I is an interval of existence for the solution of the initial value problem

$$\dot{x} = A(t)x, \qquad x(\tau) = a$$

Hint: Pick a compact interval J such that $\tau \in J \subset I$. Show that $||A(t)||_{\circ}$ is bounded on J. Show that $\psi: J \to \mathbf{R}^n$, where $\psi(t) \equiv \mathbf{a}$, is an ε -approximate solution of our DE for a suitable ε and find suitable compact sets in $I \times \mathbf{R}^n$ from which the solution is forced to exit from the lateral ends.

2) Can the vector field $v: \mathbf{R} \to \mathbf{R}$ given by $v(x) = x^3 - x$ be extended to \mathbf{S}^1 ? Why or why not? (See Problems 4, 5, and 6 of the mid-term). Here \mathbf{S}^1 is the unit circle in \mathbf{R}^2 centred at the origin with its standard structure as a differential manifold.