QUIZ 3 MARCH 15, 2021

1) Let A, X and Y be metric spaces. Suppose $\{f_{\alpha}\}_{\alpha \in A}$ is a family of continuous maps $f_{\alpha} \colon X \to Y$ such that

$$\lim_{\alpha \to \alpha_0} \sup_{x \in X} d_Y(f_\alpha(x), f_{\alpha_0}(x)) = 0$$

for every $\alpha_0 \in A$. Show that the map $F: A \times X \to Y$ given by

 $F(\alpha, x) = f_{\alpha}(x)$ $((\alpha, x) \in A \times X)$

is continuous, where the metric on $A\times X$ is

$$d_{A\times X} = ((\alpha, x), (\alpha', x')) = d_A(\alpha, \alpha') + d_X(x, x').$$

2) Let

$$x^{(n)} = F(x, x', x'', \dots, x^{(n-1)})$$

be an n^{th} order autonomous (scalar) differential equation, where F is \mathscr{C}^{∞} on \mathbb{R}^n . Show that if $\sin(mt)$ is a solution to the equation for some non-zero integer m then so is $\cos(mt)$.