QUIZ 2 FEBRUARY 8, 2021

1) Let A be an $n \times n$ matrix. Let $\pi: \mathbf{R}^{n+1} \to \mathbf{R}^n$ be the map which sends a vector to its last n coordinates. In other words $\pi(\mathbf{x}) = \mathbf{y}$ where $y_i = x_{i+1}, i = 1, \ldots, n$. Define a function $\mathbf{f}: \mathbf{R}^{n+1} \to \mathbf{R}^n$ by the formula:

$$\boldsymbol{f}(\boldsymbol{x}) = e^{x_1 A} \pi(\boldsymbol{x})$$

Show that the $n \times (n+1)$ matrix f'(x) whose (i, j)th term is $\partial f_i / \partial x_j(x)$ is given in block matrix notation by

$$\boldsymbol{f}'(\boldsymbol{x}) = \left[Ae^{x_1A}\pi(\boldsymbol{x}) \mid e^{x_1A}\right]$$

Reparameterization. Suppose $W \subset \mathbf{R}^n$ is an open domain and $v: W \to \mathbf{R}^n$ is a continuous map. Assume that for each $a \in W$, the IVP

has a solution on some time interval containing 0 in its interior and that the solution is unique on that interval. Let $h: W \to (0, \infty)$ be a continuous map and let $\boldsymbol{w}: W \to \mathbf{R}^n$ be given by

$$\boldsymbol{w}(\boldsymbol{x}) = h(\boldsymbol{x})\boldsymbol{v}(\boldsymbol{x}), \qquad \boldsymbol{x} \in W.$$

Assume that for each $a \in W$, the IVP

(‡)
$$\begin{cases} \dot{\boldsymbol{x}} &= \boldsymbol{w}(\boldsymbol{x}) \\ \boldsymbol{x}(0) &= \boldsymbol{a} \end{cases}$$

also has a solution on some time interval containing 0 in its interior and that the solution is unique on that interval.

2) Fix $\boldsymbol{a} \in W$ and let (ω_{-}, ω_{+}) and (μ_{-}, μ_{+}) be the maximal intervals of existence for (†) and (‡) for this initial value \boldsymbol{a} (with $t_0 = 0$), which exist by the previous set of exercises, and the fact that we are in the autonomous case and hence free to set t_0 equal to 0. Let $\boldsymbol{\varphi}: (\omega_{-}, \omega_{+}) \to W$ and $\boldsymbol{\psi}: (\mu_{-}, \mu_{+}) \to W$ be the unique solutions of (†) and (‡). Show that there exists an increasing function

$$j: (\omega_{-}, \omega_{+}) \longrightarrow (\mu_{-}, \mu_{+})$$

such that $\boldsymbol{\psi} \circ \boldsymbol{j} = \boldsymbol{\varphi}$ and $\boldsymbol{j}(0) = 0$. [Hint: For each $\boldsymbol{y} \in W$ let $\boldsymbol{\varphi}_{\boldsymbol{y}}$ and $\boldsymbol{\psi}_{\boldsymbol{y}}$ be the solutions to $\boldsymbol{\dot{x}} = \boldsymbol{v}(\boldsymbol{x}), \ \boldsymbol{x}(0) = \boldsymbol{y}$ and $\boldsymbol{\dot{x}} = \boldsymbol{w}(\boldsymbol{x}), \ \boldsymbol{x}(0) = \boldsymbol{y}$. For each t in the domain of $\boldsymbol{\varphi}_{\boldsymbol{y}}$ let $\sigma(t, \boldsymbol{y}) = \int_{0}^{t} \frac{1}{h(\boldsymbol{\varphi}_{\boldsymbol{y}}(u))} du$. For $\boldsymbol{y} \in W$, if t_{1} is in the domain of $\boldsymbol{\varphi}_{\boldsymbol{y}}$, say $\boldsymbol{b} = \boldsymbol{\varphi}_{\boldsymbol{y}}(t_{1})$, and t_{2} is in the domain of $\boldsymbol{\varphi}_{\boldsymbol{b}}, \ s_{1} = \sigma(t_{1}, \boldsymbol{y}), \ s_{2} = \sigma(t_{2}, \boldsymbol{b}),$ then check that $\sigma(t_{1} + t_{2}, \boldsymbol{y}) = s_{1} + s_{2}$. Set \boldsymbol{j} equal to the map $t \mapsto \sigma(t, \boldsymbol{a})$.