QUIZ 2

FEBRUARY 8, 2021

1) Let A be an $n \times n$ matrix. Let $\pi: \mathbf{R}^{n+1} \rightarrow \mathbf{R}^{n}$ be the map which sends a vector to its last n coordinates. In other words $\pi(\boldsymbol{x})=\boldsymbol{y}$ where $y_{i}=x_{i+1}, i=1, \ldots, n$. Define a function $\boldsymbol{f}: \mathbf{R}^{n+1} \rightarrow \mathbf{R}^{n}$ by the formula:

$$
\boldsymbol{f}(\boldsymbol{x})=e^{x_{1} A} \pi(\boldsymbol{x})
$$

Show that the $n \times(n+1)$ matrix $\boldsymbol{f}^{\prime}(\boldsymbol{x})$ whose $(i, j)^{\text {th }}$ term is $\partial f_{i} / \partial x_{j}(\boldsymbol{x})$ is given in block matrix notation by

$$
\boldsymbol{f}^{\prime}(\boldsymbol{x})=\left[A e^{x_{1} A} \pi(\boldsymbol{x}) \mid e^{x_{1} A}\right]
$$

Reparameterization. Suppose $W \subset \mathbf{R}^{n}$ is an open domain and $\boldsymbol{v}: W \rightarrow \mathbf{R}^{n}$ is a continuous map. Assume that for each $\boldsymbol{a} \in W$, the IVP

$$
\left\{\begin{array}{cl}
\dot{\boldsymbol{x}} & =\boldsymbol{v}(\boldsymbol{x}) \\
\boldsymbol{x}(0) & =\boldsymbol{a}
\end{array}\right.
$$

has a solution on some time interval containing 0 in its interior and that the solution is unique on that interval. Let $h: W \rightarrow(0, \infty)$ be a continuous map and let $\boldsymbol{w}: W \rightarrow \mathbf{R}^{n}$ be given by

$$
\boldsymbol{w}(\boldsymbol{x})=h(\boldsymbol{x}) \boldsymbol{v}(\boldsymbol{x}), \quad \boldsymbol{x} \in W
$$

Assume that for each $\boldsymbol{a} \in W$, the IVP

$$
\left\{\begin{array}{cl}
\dot{\boldsymbol{x}} & =\boldsymbol{w}(\boldsymbol{x}) \\
\boldsymbol{x}(0) & =\boldsymbol{a}
\end{array}\right.
$$

also has a solution on some time interval containing 0 in its interior and that the solution is unique on that interval.
2) Fix $\boldsymbol{a} \in W$ and let $\left(\omega_{-}, \omega_{+}\right)$and $\left(\mu_{-}, \mu_{+}\right)$be the maximal intervals of existence for (\dagger) and (\ddagger) for this initial value \boldsymbol{a} (with $t_{0}=0$), which exist by the previous set of exercises, and the fact that we are in the autonomous case and hence free to set t_{0} equal to 0 . Let $\boldsymbol{\varphi}:\left(\omega_{-}, \omega_{+}\right) \rightarrow W$ and $\psi:\left(\mu_{-}, \mu_{+}\right) \rightarrow W$ be the unique solutions of (\dagger) and (\ddagger). Show that there exists an increasing function

$$
j:\left(\omega_{-}, \omega_{+}\right) \longrightarrow\left(\mu_{-}, \mu_{+}\right)
$$

such that $\boldsymbol{\psi} \circ j=\boldsymbol{\varphi}$ and $j(0)=0$. [Hint: For each $\boldsymbol{y} \in W$ let $\boldsymbol{\varphi}_{\boldsymbol{y}}$ and $\boldsymbol{\psi}_{\boldsymbol{y}}$ be the solutions to $\dot{\boldsymbol{x}}=\boldsymbol{v}(\boldsymbol{x}), \boldsymbol{x}(0)=\boldsymbol{y}$ and $\dot{\boldsymbol{x}}=\boldsymbol{w}(\boldsymbol{x}), \boldsymbol{x}(0)=\boldsymbol{y}$. For each t in the domain of $\boldsymbol{\varphi}_{\boldsymbol{y}}$ let $\sigma(t, \boldsymbol{y})=\int_{0}^{t} \frac{1}{h\left(\boldsymbol{\varphi}_{\boldsymbol{y}}(u)\right)} d u$. For $\boldsymbol{y} \in W$, if t_{1} is in the domain of $\boldsymbol{\varphi}_{\boldsymbol{y}}$, say $\boldsymbol{b}=\boldsymbol{\varphi}_{\boldsymbol{y}}\left(t_{1}\right)$, and t_{2} is in the domain of $\boldsymbol{\varphi}_{\boldsymbol{b}}, s_{1}=\sigma\left(t_{1}, \boldsymbol{y}\right), s_{2}=\sigma\left(t_{2}, \boldsymbol{b}\right)$, then check that $\sigma\left(t_{1}+t_{2}, \boldsymbol{y}\right)=s_{1}+s_{2}$. Set j equal to the map $t \mapsto \sigma(t, \boldsymbol{a})$.]

