QUIZ 1
JAN XX, 2021

Let V be a finite dimensional vector space over a field k. A linear operator $T: V \rightarrow V$ is called nilpotent if there exists a positive integer n such that $T^{n}=0$. Similarly, define a square matrix A with entries in k to be nilpotent if $A^{n}=0$ for some positive integer n. Clearly, once one fixes a basis for V, a linear operator T is nilpotent if and only if its associated matrix (with respect to the fixed basis) is nilpotent.

Now assume $k=\mathbf{R}$, the field of reals. Suppose T is a nilpotent linear operator on V. Define

$$
e^{T}=\sum_{m=0}^{\infty} \frac{T^{m}}{m!}
$$

Note that this a finite sum since T is nilpotent. It is easy to see that

$$
e^{(t+s) T}=e^{t T} e^{s T}
$$

and that $\left\{e^{t T} \mid t \in \mathbf{R}\right\}$ is a one-parameter group of linear transformations on V. If A is a nilpotent matrix with entries from \mathbf{R}, define $e^{t A}$ in the same way as $e^{t T}$ is defined for a nilpotent linear operator. It is clear that if T is the linear transformation associated with A, then $e^{t T}$ is the linear transformation associated with $e^{t A}$. You don't have to prove these easy assertions in this quiz, but you may use them in anything that follows.

All vector spaces, matrices, and linear transformations below are over \mathbf{R}.
(1) Let V be the vector space polynomials of degree less than n over \mathbf{R}. In other words

$$
V=\{p \in \mathbf{R}[x] \mid \operatorname{deg} p<n\}
$$

Let $T: V \rightarrow V$ be the map $T=\frac{d}{d x}$. From elementary calculus, T is linear and $T^{n}=0$ (there is no need to re-prove this well-known result). For $t \in \mathbf{R}$, let $H_{t}: V \rightarrow V$ be the $\operatorname{map} H_{t}(p(x))=p(x+t), p(x) \in V$. Show that

$$
e^{t T}=H_{t}
$$

(2) Let A be the $n \times n$ real upper-triangular matrix:

$$
A=\left[\begin{array}{lllll}
0 & 1 & & & 0 \\
& 0 & 1 & & \\
& & 0 & \ddots & \\
& & & \ddots & 1 \\
& & & & 0
\end{array}\right]
$$

Show that $A^{n}=0$ and that for every $t \in \mathbf{R}, e^{t A}$ is the upper triangular matrix:

$$
e^{t A}=\left[\begin{array}{ccccc}
1 & t & t^{2} / 2! & \ldots & t^{n-1} /(n-1)! \\
& 1 & t & \ldots & t^{n-2} /(n-2)! \\
& & 1 & \ldots & t^{n-3} /(n-3)! \\
& & & \ddots & t^{2} / 2! \\
& & & & t
\end{array}\right]
$$

Hint: Use the first problem, by identifying V with \mathbf{R}^{n} and choosing a suitable basis for V so that A is the matrix of the map $\frac{d}{d x}: V \rightarrow V$.

