LECTURE 9

Date of Lecture: February 1, 2019
As always, $\mathbf{K} \in\{\mathbf{R}, \mathbf{C}\}$.
The symbol is for flagging a cautionary comment or a tricky argument. It occurs in the margins and is Knuth's version of Bourbaki's "dangerous bend symbol".

An n-tuple $\left(x_{1}, \ldots, x_{n}\right)$ of symbols (x_{i} not necessarily real or complex numbers) will also be written as a column vector when convenient. Thus

$$
\left(x_{1}, \ldots, x_{n}\right)=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

A map \boldsymbol{f} from a set S to a product set $T_{1} \times \cdots \times T_{n}$ will often be written as an n-tuple $\boldsymbol{f}=\left(f_{1}, \ldots, f_{n}\right)$, with f_{i} a map from S to T_{i}, and hence, by the above convention, as a column vector

$$
\boldsymbol{f}=\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right] .
$$

(See Remark 2.2.2 of Lecture 5 of ANA2.)
The default norm on Euclidean spaces of the form \mathbf{R}^{n} is the Euclidean norm $\left\|\|_{2}\right.$ and we will simply denote it as $\|\|$. The space of \mathbf{K}-linear transformations from \mathbf{K}^{n} to \mathbf{K}^{m} will be denoted $\operatorname{Hom}_{\mathbf{R}}\left(\mathbf{K}^{n}, \mathbf{K}^{m}\right)$ and will be identified in the standard way with the space of $m \times n$ matrices $M_{m, n}(\mathbf{K})$ and the operator norm ${ }^{1}$ on both spaces will be denoted $\left\|\|_{0}\right.$. If $m=n$, we write $M_{n}(\mathbf{R})$ for $M_{m, n}(\mathbf{R})$, and $L\left(\mathbf{K}^{n}\right)$ for $\operatorname{Hom}_{\mathbf{K}}\left(\mathbf{K}^{n}, \mathbf{K}^{n}\right)$.

Note that $\left(x_{1}, \ldots, x_{n}\right) \neq\left[x_{1} \ldots x_{n}\right]$. Each side is the transpose of the other.

1. One-parameter group of transformations

1.1. Set theoretic version. Let M be a set, and

$$
g: \mathbf{R} \times M \longrightarrow M
$$

an action of the additive group \mathbf{R} on M. For fixed $t \in \mathbf{R}$ write $g^{t}: M \rightarrow M$ for the map given by

$$
g^{t}(n)=g(t, m), \quad(m \in M)
$$

We can regard g as a homomorphism

$$
g: \mathbf{R} \rightarrow \operatorname{Aut}(M)
$$

We have

$$
\begin{align*}
g^{t} g^{s} & =g^{t+s} \quad s, t \in \mathbf{R} \\
g^{0} & =\mathbf{1}_{M} . \tag{1.1.1}
\end{align*}
$$

[^0]Definition 1.1.2. A one-parameter group of transformations on a set M is a map $g: \mathbf{R} \times M \rightarrow M$ satisfying (1.1.1). This is often denoted $\left\{g^{t}\right\}$ or $\left\{g^{t} \mid t \in \mathbf{R}\right\}$. The pair $\left(M,\left\{g^{t}\right\}\right)$ is called a phase flow

There is a loose terminology associated with all this. Often $g,\left\{g^{t}\right\},\left(M,\left\{g^{t}\right\}\right)$ are all called phase flows. As far as information content goes, there is no difference between a one-parameter group of transformations and its phase flow. In fact g, $\left\{g^{t}\right\},\left(M,\left\{g^{t}\right\}\right)$ all contain exactly the same information.

Definition 1.1.3. Let $\left(M,\left\{g^{t}\right\}\right)$ be a phase flow. Then M is called the phase space, or the state space, of the flow. A point of M is called a phase point or a state. The space $\mathbf{R} \times M$ is called the extended phase space. Let $x \in M$ be a phase point. The map

$$
\varphi=\varphi_{x}: \mathbf{R} \longrightarrow M
$$

given by

$$
\varphi(t)=g^{t} x, \quad t \in \mathbf{R}
$$

is called the motion of x under the flow $\left(M,\left\{g^{t}\right\}\right)$ and the image of φ in M is called the phase curve. The graph of φ in the extended phase space $\mathbf{R} \times M$ is called the integral curve of the phase flow.

1.2. One-parameter group of diffeomorphisms. In what follows, feel free to replace the term "manifold" by "open subset of Euclidean space". By a manifold (for those willing to start thinking in those terms), we mean a smooth differential manifold. The reader is urged once again to look up the definition of a differential manifold from any source, and also look at the supplementary notes on derivations and tangent spaces.

Definition 1.2.1. By a one-parameter group $\left\{g^{t}\right\}$ of diffeomorphisms of a manifold M is meant a mapping

$$
g: \mathbf{R} \times M \longrightarrow M, \quad g(t, x)=g^{t} x, \quad t \in \mathbf{R}, x \in M
$$

of $\mathbf{R} \times M$ into M such that

1. g is a \mathscr{C}^{2} mapping;
2. The mapping $g^{t}: M \rightarrow M$ is a diffeomorphism for every $t \in \mathbf{R}$;
3. The family $\left\{g^{t} \mid t \in \mathbf{R}\right\}$ is a one-parameter group of transformations of M.

There is clearly a more succinct definition, namely, a one-parameter group of diffeomorphisms on a manifold M is a \mathscr{C}^{r}-map (r assumed to be ≥ 2)

$$
g: \mathbf{R} \times M \rightarrow M
$$

such that g is an action of the additive group \mathbf{R} on M. Note that this forces each $g^{t}: M \rightarrow M$ to be a diffeomorphism, where $g^{t}(\boldsymbol{x})=g(t, \boldsymbol{x})$ for $\boldsymbol{x} \in M$. As
before, we will also use the notation $\left\{g^{t}\right\}$ to denote this one-parameter group of diffeomorphisms.
1.3. The phase velocity associated with $\left\{g^{t}\right\}$. Fix a one-parameter group $\left\{g^{t}\right\}$ of diffeomorphisms on an open set M of \mathbf{R}^{n}. For $\boldsymbol{x} \in M$, let

$$
\varphi_{x}: \mathbf{R} \rightarrow M
$$

be the map $t \mapsto g^{t} \boldsymbol{x}$. As before, we write

$$
\dot{\varphi}_{x}=\frac{d \varphi_{x}}{d t}
$$

Note that

$$
\dot{\varphi}_{x}: \mathbf{R} \rightarrow \mathbf{R}^{n}
$$

Definition 1.3.1. The phase velocity vector of $\left\{g^{t}\right\}$ at $\boldsymbol{x} \in M$ is the vector $v(\boldsymbol{x})$ in \mathbf{R}^{n} given by the formula

$$
v(\boldsymbol{x})=\dot{\varphi}_{\boldsymbol{x}}(0)=\lim _{h \rightarrow 0} \frac{\varphi_{\boldsymbol{x}}(h)-\boldsymbol{x}}{h} .
$$

The map $v: M \rightarrow \mathbf{R}^{n}$ given by $\boldsymbol{x} \mapsto v(\boldsymbol{x})$ is called the phase velocity field.
Theorem 1.3.2. Let $v: M \rightarrow \mathbf{R}^{n}$ be the phase velocity field of $\left\{g^{t}\right\}$ and let $\boldsymbol{x}_{\mathbf{0}} \in M$. Then $\varphi_{x_{0}}$ is the unique solution to the autonomous IVP

$$
\dot{\boldsymbol{x}}=v(\boldsymbol{x}), \quad \boldsymbol{x}(0)=\boldsymbol{x}_{\mathbf{0}} .
$$

Proof. The uniqueness follows from local uniqueness. Indeed, since g is \mathscr{C}^{2}, the phase veloctiy is \mathscr{C}^{1}. Now use the fact that \mathscr{C}^{1} maps are locally Lipschitz to see uniqueness. We have to show that $\varphi_{x_{0}}$ is a solution to the given IVP. We clearly have $\varphi_{x_{0}}(0)=x_{0}$. Furthermore, we have:

$$
\begin{aligned}
\dot{\varphi}_{\boldsymbol{x}_{\mathbf{0}}}(s) & =\lim _{h \rightarrow 0} \frac{\varphi_{\boldsymbol{x}_{\mathbf{0}}}(s+h)-\varphi_{\boldsymbol{x}_{\mathbf{0}}}(s)}{h} \\
& =\lim _{h \rightarrow 0} \frac{g^{s+h} \boldsymbol{x}_{\mathbf{0}}-g^{s} \boldsymbol{x}_{\mathbf{0}}}{h} \\
& =\lim _{h \rightarrow 0} \frac{g^{h}\left(g^{s} \boldsymbol{x}_{\mathbf{0}}\right)-g^{s} \boldsymbol{x}_{\mathbf{0}}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\varphi_{g^{s} \boldsymbol{x}_{\mathbf{0}}}(h)-g^{s} \boldsymbol{x}_{\mathbf{0}}}{h} \\
& =v\left(g^{s} \boldsymbol{x}_{\mathbf{0}}\right) \\
& =v\left(\varphi_{\boldsymbol{x}_{\mathbf{0}}}(s)\right) .
\end{aligned}
$$

This gives the required result.
1.3.3. Tweaks. In the definition of a one-parameter group of diffeomorphisms, we can relax the condition that g be \mathscr{C}^{2}, and merely insist that it be $\mathscr{C}{ }^{1}$. In this case too, the phase velocity vector field \boldsymbol{v} makes sense. On the other hand, for Theorem 1.3.2 to hold, one will need to assume \boldsymbol{v} is locally Lipschitz. For that it is enough to assume (for example) that \boldsymbol{v} is \mathscr{C}^{1}.

1.4. One-parameter groups of linear transformations.

Definition 1.4.1. A one-parameter group of linear transformations on \mathbf{R}^{n} is a one-parameter group $\left\{g^{t}\right\}$ of diffeomorphisms on \mathbf{R}^{n} such that each $g^{t}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is a linear transformation.

Note that a one-parameter group of linear transformations is the same as a group homomorphism

$$
g: \mathbf{R} \rightarrow G L_{n}(\mathbf{R}),
$$

such that g is in \mathscr{C}^{r}, where we regard $G L_{n}(\mathbf{R})$ as an open subset of $\mathbf{R}^{n^{2}}$.
Let $\left\{g^{t}\right\}$ be a one-parameter group of linear transformations on \mathbf{R}^{n}. Let us work out its phase velocity field. Since $g: \mathbf{R} \times \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is C^{r}, therefore the map $\mathbf{R} \rightarrow G L_{n}(\mathbf{R}) \subset L(\mathbf{R})$, given by $t \mapsto g^{t}$ is C^{r}, and in particular has continuous derivatives. Let

$$
A=\left.\frac{d g^{t}}{d t}\right|_{t=0}
$$

Then $A \in L(\mathbf{R})=\mathbf{R}^{n^{2}}$. Note that since all norms on $\mathbf{R}^{n^{2}}$ are equivalent, we get

$$
\lim _{h \rightarrow 0}\left\|\frac{g^{h}-I_{n}}{h}-A\right\|_{0}=0
$$

where $\|\cdot\|_{\circ}$ is the norm on $L\left(\mathbf{R}^{n}\right)$ we defined in earlier lectures.
Let I_{n} be the identity linear transformation on $\mathbf{R}^{n},\|\cdot\|$ the usual Euclidean norm on \mathbf{R}^{n}. Then we have

$$
\begin{aligned}
\left\|\frac{g^{h} \boldsymbol{x}-\boldsymbol{x}}{h}-A \boldsymbol{x}\right\| & =\left\|\left(\frac{g^{h}-I_{n}}{h}-A\right)(\boldsymbol{x})\right\| \\
& \leq\left\|\frac{g^{h}-I_{n}}{h}-A\right\|_{0} \cdot\|\boldsymbol{x}\| .
\end{aligned}
$$

The last quantity tends to 0 as $h \rightarrow 0$. It follows that

$$
\lim _{h \rightarrow 0} \frac{g^{h} \boldsymbol{x}-\boldsymbol{x}}{h}=A \boldsymbol{x}
$$

Thus, by definition, $A \boldsymbol{x}$ is the phase velocity at \boldsymbol{x} for $\left\{g^{t}\right\} .{ }^{2}$

References

[A1] V. I. Arnold, Ordinary Differential Equations, translated by Richard A. Silverman, MIT Press (also Prentice-Hall, India), Cambridge,MA, U.S.A., 1973.
[A2] V. I. Arnold, Ordinary Differential Equations, translates by Roger Cooke, Universitext, Springer-Verlag, Berlin, 2006.

[^1]
[^0]: ${ }^{1}$ See $\S \S 2.1$ of Lecture 5 of ANA2.

[^1]: ${ }^{2}$ We prefer the symbol A over v in this case.

