LECTURE 9

Date of Lecture: February 1, 2019

As always, $\mathbf{K} \in {\{\mathbf{R}, \mathbf{C}\}}$.

The symbol \bigotimes is for flagging a cautionary comment or a tricky argument. It occurs in the margins and is Knuth's version of Bourbaki's "dangerous bend symbol".

An *n*-tuple (x_1, \ldots, x_n) of symbols $(x_i \text{ not necessarily real or complex numbers}) will also be written as a column vector when convenient. Thus$

$$(x_1,\ldots,x_n) = \begin{bmatrix} x_1\\ \vdots\\ x_n \end{bmatrix}$$

A map f from a set S to a product set $T_1 \times \cdots \times T_n$ will often be written as an *n*-tuple $f = (f_1, \ldots, f_n)$, with f_i a map from S to T_i , and hence, by the above convention, as a column vector

$$oldsymbol{f} = egin{bmatrix} f_1 \ dots \ f_n \end{bmatrix}.$$

(See Remark 2.2.2 of Lecture 5 of ANA2.)

The default norm on Euclidean spaces of the form \mathbf{R}^n is the Euclidean norm $\| \|_2$ and we will simply denote it as $\| \|$. The space of **K**-linear transformations from \mathbf{K}^n to \mathbf{K}^m will be denoted $\operatorname{Hom}_{\mathbf{R}}(\mathbf{K}^n, \mathbf{K}^m)$ and will be identified in the standard way with the space of $m \times n$ matrices $M_{m,n}(\mathbf{K})$ and the operator norm¹ on both spaces will be denoted $\| \|_{\circ}$. If m = n, we write $M_n(\mathbf{R})$ for $M_{m,n}(\mathbf{R})$, and $L(\mathbf{K}^n)$ for $\operatorname{Hom}_{\mathbf{K}}(\mathbf{K}^n, \mathbf{K}^n)$.

Note that $(x_1, \ldots, x_n) \neq [x_1 \ldots x_n]$. Each side is the transpose of the other.

1. One-parameter group of transformations

1.1. Set theoretic version. Let M be a set, and

$$g: \mathbf{R} \times M \longrightarrow M$$

an action of the additive group \mathbf{R} on M. For fixed $t \in \mathbf{R}$ write $g^t \colon M \to M$ for the map given by

$$g^t(n) = g(t,m), \qquad (m \in M).$$

We can regard g as a homomorphism

$$g: \mathbf{R} \to \operatorname{Aut}(M).$$

We have

(1.1.1)
$$g^t g^s = g^{t+s} \qquad s, t \in \mathbf{R}$$
$$g^0 = \mathbf{1}_M.$$

¹See §§2.1 of Lecture 5 of ANA2.

Definition 1.1.2. A one-parameter group of transformations on a set M is a map $g: \mathbf{R} \times M \to M$ satisfying (1.1.1). This is often denoted $\{g^t\}$ or $\{g^t \mid t \in \mathbf{R}\}$. The pair $(M, \{g^t\})$ is called a *phase flow*

There is a loose terminology associated with all this. Often g, $\{g^t\}$, $(M, \{g^t\})$ are all called phase flows. As far as information content goes, there is no difference between a one-parameter group of transformations and its phase flow. In fact g, $\{g^t\}$, $(M, \{g^t\})$ all contain exactly the same information.

Definition 1.1.3. Let $(M, \{g^t\})$ be a phase flow. Then M is called the *phase space*, or the *state space*, of the flow. A point of M is called a *phase point* or a *state*. The space $\mathbf{R} \times M$ is called the *extended phase space*. Let $x \in M$ be a phase point. The map

$$\varphi = \varphi_x \colon \mathbf{R} \longrightarrow M$$

given by

$$\varphi(t) = g^t x, \qquad t \in \mathbf{R}$$

is called the *motion* of x under the flow $(M, \{g^t\})$ and the image of φ in M is called the phase curve. The graph of φ in the extended phase space $\mathbf{R} \times M$ is called the *integral curve* of the phase flow.

1.2. **One-parameter group of diffeomorphisms.** In what follows, feel free to replace the term "manifold" by "open subset of Euclidean space". By a manifold (for those willing to start thinking in those terms), we mean a smooth differential manifold. The reader is urged once again to look up the definition of a differential manifold from any source, and also look at the supplementary notes on derivations and tangent spaces.

Definition 1.2.1. By a one-parameter group $\{g^t\}$ of diffeomorphisms of a manifold M is meant a mapping

 $g: \mathbf{R} \times M \longrightarrow M, \quad g(t, x) = g^t x, \quad t \in \mathbf{R}, \ x \in M$

of $\mathbf{R} \times M$ into M such that

- **1.** q is a \mathscr{C}^2 mapping;
- **2.** The mapping $g^t \colon M \to M$ is a diffeomorphism for every $t \in \mathbf{R}$;
- **3.** The family $\{g^t \mid t \in \mathbf{R}\}$ is a one-parameter group of transformations of M.

There is clearly a more succinct definition, namely, a one-parameter group of diffeomorphisms on a manifold M is a \mathscr{C}^r -map (r assumed to be ≥ 2)

$$g: \mathbf{R} \times M \to M$$

such that g is an action of the additive group **R** on M. Note that this forces each $g^t: M \to M$ to be a diffeomorphism, where $g^t(\mathbf{x}) = g(t, \mathbf{x})$ for $\mathbf{x} \in M$. As

before, we will also use the notation $\{g^t\}$ to denote this one-parameter group of diffeomorphisms.

1.3. The phase velocity associated with $\{g^t\}$. Fix a one-parameter group $\{g^t\}$ of diffeomorphisms on an open set M of \mathbf{R}^n . For $\mathbf{x} \in M$, let

$$\varphi_{\boldsymbol{x}} \colon \mathbf{R} \to M$$

be the map $t \mapsto g^t \boldsymbol{x}$. As before, we write

$$\dot{\varphi}_{\boldsymbol{x}} = \frac{d\varphi_{\boldsymbol{x}}}{dt}.$$

Note that

$$\dot{\varphi}_{\boldsymbol{x}} \colon \mathbf{R} \to \mathbf{R}^n.$$

Definition 1.3.1. The phase velocity vector of $\{g^t\}$ at $x \in M$ is the vector v(x) in \mathbf{R}^n given by the formula

$$v(\boldsymbol{x}) = \dot{\varphi}_{\boldsymbol{x}}(0) = \lim_{h \to 0} \frac{\varphi_{\boldsymbol{x}}(h) - \boldsymbol{x}}{h}.$$

The map $v: M \to \mathbf{R}^n$ given by $\mathbf{x} \mapsto v(\mathbf{x})$ is called the *phase velocity field*.

Theorem 1.3.2. Let $v: M \to \mathbf{R}^n$ be the phase velocity field of $\{g^t\}$ and let $\mathbf{x_0} \in M$. Then $\varphi_{\mathbf{x_0}}$ is the unique solution to the autonomous IVP

$$\dot{\boldsymbol{x}} = v(\boldsymbol{x}), \quad \boldsymbol{x}(0) = \boldsymbol{x}_{\boldsymbol{0}}.$$

Proof. The uniqueness follows from local uniqueness. Indeed, since g is \mathscr{C}^2 , the phase velocity is \mathscr{C}^1 . Now use the fact that \mathscr{C}^1 maps are locally Lipschitz to see uniqueness. We have to show that $\varphi_{\boldsymbol{x}_0}$ is a solution to the given IVP. We clearly have $\varphi_{\boldsymbol{x}_0}(0) = \boldsymbol{x}_0$. Furthermore, we have:

$$\begin{aligned} \dot{\varphi}_{\boldsymbol{x}_{0}}(s) &= \lim_{h \to 0} \frac{\varphi_{\boldsymbol{x}_{0}}(s+h) - \varphi_{\boldsymbol{x}_{0}}(s)}{h} \\ &= \lim_{h \to 0} \frac{g^{s+h}\boldsymbol{x}_{0} - g^{s}\boldsymbol{x}_{0}}{h} \\ &= \lim_{h \to 0} \frac{g^{h}(g^{s}\boldsymbol{x}_{0}) - g^{s}\boldsymbol{x}_{0}}{h} \\ &= \lim_{h \to 0} \frac{\varphi_{g^{s}\boldsymbol{x}_{0}}(h) - g^{s}\boldsymbol{x}_{0}}{h} \\ &= v(g^{s}\boldsymbol{x}_{0}) \\ &= v(\varphi_{\boldsymbol{x}_{0}}(s)). \end{aligned}$$

This gives the required result.

1.3.3. Tweaks. In the definition of a one-parameter group of diffeomorphisms, we can relax the condition that g be \mathscr{C}^2 , and merely insist that it be \mathscr{C}^1 . In this case too, the phase velocity vector field \boldsymbol{v} makes sense. On the other hand, for Theorem 1.3.2 to hold, one will need to assume \boldsymbol{v} is locally Lipschitz. For that it is enough to assume (for example) that \boldsymbol{v} is \mathscr{C}^1 .

1.4. One-parameter groups of linear transformations.

Definition 1.4.1. A one-parameter group of linear transformations on \mathbb{R}^n is a one-parameter group $\{g^t\}$ of diffeomorphisms on \mathbb{R}^n such that each $g^t \colon \mathbb{R}^n \to \mathbb{R}^n$ is a linear transformation.

Note that a one-parameter group of linear transformations is the same as a group homomorphism

$$g: \mathbf{R} \to GL_n(\mathbf{R}),$$

such that g is in \mathscr{C}^r , where we regard $GL_n(\mathbf{R})$ as an open subset of \mathbf{R}^{n^2} .

Let $\{g^t\}$ be a one-parameter group of linear transformations on \mathbb{R}^n . Let us work out its phase velocity field. Since $g: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ is C^r , therefore the map $\mathbb{R} \to GL_n(\mathbb{R}) \subset L(\mathbb{R})$, given by $t \mapsto g^t$ is C^r , and in particular has continuous derivatives. Let

$$A = \frac{dg^t}{dt} \bigg|_{t=0}$$

Then $A \in L(\mathbf{R}) = \mathbf{R}^{n^2}$. Note that since all norms on \mathbf{R}^{n^2} are equivalent, we get

$$\lim_{h \to 0} \left\| \frac{g^h - I_n}{h} - A \right\|_{\circ} = 0$$

where $\|\cdot\|_{\circ}$ is the norm on $L(\mathbf{R}^n)$ we defined in earlier lectures.

Let I_n be the identity linear transformation on \mathbb{R}^n , $\|\cdot\|$ the usual Euclidean norm on \mathbb{R}^n . Then we have

$$\begin{split} \left\| \frac{g^h \boldsymbol{x} - \boldsymbol{x}}{h} - A \boldsymbol{x} \right\| &= \left\| \left(\frac{g^h - I_n}{h} - A \right) (\boldsymbol{x}) \right\| \\ &\leq \left\| \frac{g^h - I_n}{h} - A \right\|_{\circ} \cdot \|\boldsymbol{x}\|. \end{split}$$

The last quantity tends to 0 as $h \to 0$. It follows that

$$\lim_{h\to 0}\frac{g^h\boldsymbol{x}-\boldsymbol{x}}{h}=A\boldsymbol{x}.$$

Thus, by definition, $A\boldsymbol{x}$ is the phase velocity at \boldsymbol{x} for $\{g^t\}^2$.

References

- [A1] V. I. Arnold, Ordinary Differential Equations, translated by Richard A. Silverman, MIT Press (also Prentice-Hall, India), Cambridge, MA, U.S.A., 1973.
- [A2] V. I. Arnold, Ordinary Differential Equations, translates by Roger Cooke, Universitext, Springer-Verlag, Berlin, 2006.

²We prefer the symbol A over v in this case.