LECTURE 8

Date of Lecture: January 27, 2021
The symbol ${ }^{2}$ is for flagging a cautionary comment or a tricky argument. It occurs in the margins and is Knuth's version of Bourbaki's "dangerous bend symbol".

An n-tuple $\left(x_{1}, \ldots, x_{n}\right)$ of symbols (x_{i} not necessarily real or complex numbers) will also be written as a column vector when convenient. Thus

$$
\left(x_{1}, \ldots, x_{n}\right)=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

A map \boldsymbol{f} from a set S to a product set $T_{1} \times \cdots \times T_{n}$ will often be written as an n-tuple $\boldsymbol{f}=\left(f_{1}, \ldots, f_{n}\right)$, with f_{i} a map from S to T_{i}, and hence, by the above convention, as a column vector

$$
\boldsymbol{f}=\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right] .
$$

(See Remark 2.2.2 of Lecture 5 of ANA2.)
The default norm on Euclidean spaces of the form \mathbf{R}^{n} is the Euclidean norm $\left\|\|_{2}\right.$ and we will simply denote it as $\|\|$. The space of \mathbf{R}-linear transformations from \mathbf{R}^{n} to \mathbf{R}^{m} will be denoted $\operatorname{Hom}_{\mathbf{R}}\left(\mathbf{R}^{n}, \mathbf{R}^{m}\right)$ and will be identified in the standard way with the space of $m \times n$ real matrices $M_{m, n}(\mathbf{R})$ and the operator norm ${ }^{1}$ on both spaces will be denoted $\left\|\|_{0}\right.$. If $m=n$, we write $M_{n}(\mathbf{R})$ for $M_{m, n}(\mathbf{R})$.

Note that $\left(x_{1}, \ldots, x_{n}\right) \neq\left[x_{1} \ldots x_{n}\right]$. Each side is the transpose of the other.

1. Linear Differential Equations

Let $I \subset \mathbf{R}$ be an interval (closed, open, half-open, but with nonempty interior). Recall that a (vector valued) linear differential equation is a differential equation of the form

$$
\begin{equation*}
\dot{\boldsymbol{x}}(t)=A(t) \boldsymbol{x}(t)+\boldsymbol{g}(t) \tag{1}
\end{equation*}
$$

where $A: I \rightarrow M_{n}(\mathbf{R})$ and $\boldsymbol{g}: I \rightarrow \mathbf{R}^{n}$ are continuous maps. Note that the extended phase space is $I \times \mathbf{R}^{n}$ and (1) is of the form $\dot{\boldsymbol{x}}=\boldsymbol{v}(t, \boldsymbol{x})$ where $\boldsymbol{v}: I \times \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is given by the formula $\boldsymbol{v}(t, \boldsymbol{x})=A(t) \boldsymbol{x}(t)+\boldsymbol{g}(t)$ for $t \in I$ and $\boldsymbol{x} \in \mathbf{R}^{n}$. It is easy to see, and this was shown in the proof of Theorem 1.1.1 of Lecture 7, that \boldsymbol{v} is locally Lipschitz in the second variable. In fact it was shown there that \boldsymbol{v} is uniformly Lipschitz on any rectangle of the form $J \times \mathbf{R}^{n}$ where J is closed (i.e. compact) interval in I.

[^0]If in the above, $\boldsymbol{g}(t)=0$ for every $t \in I$, then (1) is said to be a homogeneous linear differential equation. Explicitly, a homogeneous differential equation on I is an equation of the form

$$
\begin{equation*}
\dot{\boldsymbol{x}}(t)=A(t) \boldsymbol{x}(t) \tag{2}
\end{equation*}
$$

where $A: I \rightarrow M_{n}(\mathbf{R})$ is a continuous function. Here $\boldsymbol{v}(t, \boldsymbol{x})=A(t) \boldsymbol{x}$ for $t \in I$ and $\boldsymbol{x} \in \mathbf{R}^{n}$. In Theorem 1.1.1 of Lecture 7 we showed that with A and \boldsymbol{g} as above, and (τ, \boldsymbol{a}) a fixed point in $I \times \mathbf{R}^{n}$, the IVP $\dot{\boldsymbol{x}}(t)=\boldsymbol{v}(t, \boldsymbol{x}), \boldsymbol{x}(\tau)=\boldsymbol{a}$ has unique solution on all of I.

Assumption. For the rest of this lecture we fix I and A as above. In particular, A is continuous.
1.1. For a non-negative integer k, let $\mathscr{C}^{k}(I)$ be the short form of $\mathscr{C}^{k}\left(I, \mathbf{R}^{n}\right)$, the \mathbf{R}-vector space of \mathbf{R}^{n}-valued \mathscr{C}^{k} functions on I (with the usual convention of using one-sided derivatives in the event a boundary point of I lies in I). A reminder: $\mathscr{C}^{0}(I)$ is the space of continuous \mathbf{R}^{n}-valued functions on I. Consider the map

$$
\begin{align*}
\mathscr{C}^{1}(I) & \xrightarrow{T} \mathscr{C}^{0}(I) \tag{1.1.1}\\
\boldsymbol{f} & \longmapsto \dot{\boldsymbol{f}}-A \boldsymbol{f}
\end{align*}
$$

It is clear that T is a linear transformation. Let

$$
\begin{equation*}
S:=\operatorname{ker} T \tag{1.1.2}
\end{equation*}
$$

It is clear that S is the set of solutions of the homogeneous differential equation (2). In particular, S is an \mathbf{R}-vector space in a natural way. It is a subspace of $\mathscr{C}^{1}(I)$. As in Problem 5 of HW2 we see that

Theorem 1.1.3. Let S and T be as above.
(a) The map $T: \mathscr{C}^{1}(I) \rightarrow \mathscr{C}^{0}(I)$ is surjective.
(b) The vector space S is n-dimensional.

Proof. Given $\boldsymbol{g} \in \mathscr{C}^{0}(I)$, we know that the differential equation (1) has solutions on I by Theorem 1.1.1 of Lecture 7. Indeed fix $t_{\circ} \in I$ and $\boldsymbol{a} \in \mathbf{R}^{n}$, and we can find a solution φ with the requirement that $\boldsymbol{\varphi}\left(t_{0}\right)=\boldsymbol{a}$. Now, $\boldsymbol{\varphi} \in \mathscr{C}(I)$ and $T \boldsymbol{\varphi}=\boldsymbol{g}$. Thus T is surjective. This proves (a).

We now prove (b). Fix $t_{\circ} \in I$ and let

$$
E=E_{t_{0}}: S \longrightarrow \mathbf{R}^{n}
$$

be the evaluation map given by

$$
E \boldsymbol{f}=\boldsymbol{f}\left(t_{0}\right)
$$

E is clearly a linear transformation. If $\boldsymbol{f} \in S$ is such that $E(\boldsymbol{f})=\mathbf{0}$, then \boldsymbol{f} is a solution to the IVP

$$
\dot{\boldsymbol{x}}=A \boldsymbol{x}, \quad \boldsymbol{x}\left(t_{\circ}\right)=\mathbf{0}
$$

On the other hand, so is the constant function $\mathbf{0}$. By uniqueness of solutions to IVPs, we see that $\boldsymbol{f}=\mathbf{0}$. Thus E is an injective linear transformation.

Next suppose $\boldsymbol{a} \in \mathbf{R}^{n}$. We claim $\boldsymbol{a}=E \boldsymbol{f}$ for some $\boldsymbol{f} \in S$. Consider the IVP

$$
\dot{\boldsymbol{x}}=A \boldsymbol{x}, \quad \boldsymbol{x}\left(t_{\circ}\right)=\boldsymbol{a}
$$

This IVP has a unique solution \boldsymbol{f} on I. Now, $\boldsymbol{f} \in S$ and $\boldsymbol{f}\left(t_{\circ}\right)=\boldsymbol{a}$. In other words $\boldsymbol{f} \in S$ and $E \boldsymbol{f}=\boldsymbol{a}$. Thus E is surjective and hence we have

$$
E: S \xrightarrow{\sim} \mathbf{R}^{n}
$$

This proves that S is n-dimensional.
Since T is surjective, if $\boldsymbol{g} \in \mathscr{C}^{0}(I)$, then $T^{-1}(\boldsymbol{g}) \neq \emptyset$. This means, since $S=$ ker T, that $T^{-1}(\boldsymbol{g})$ is a coset of S. In fact if $\boldsymbol{\psi} \in T^{-1}(\boldsymbol{g})$, we have

$$
\begin{equation*}
T^{-1}(\boldsymbol{g})=S+\boldsymbol{\psi} \tag{1.1.4}
\end{equation*}
$$

We emphasise that (1.1.4) remains true whichever element $\boldsymbol{\psi}$ of $T^{-1}(\boldsymbol{g})$ we happen to pick.
1.1.5. General solutions, particular solutions, and complementary solutions. Let $\varphi_{1}, \ldots, \varphi_{n}$ be linearly independent elements of S. Since $\operatorname{dim}_{\mathbf{R}} S=n$, this is equivalent to saying $\varphi_{1}, \ldots, \varphi_{n}$ is a basis of S. An arbitrary element of S can then be expressed as

$$
\begin{equation*}
\boldsymbol{\varphi}=c_{1} \boldsymbol{\varphi}_{1}+\cdots+c_{n} \boldsymbol{\varphi}_{n} \tag{1.1.5.1}
\end{equation*}
$$

where c_{1}, \ldots, c_{n} are arbitrary constants. The expression in (1.1.5.1) (with arbitrary constants $\left.c_{i}, i=1, \ldots, n\right)$ is called the general solution to the homogeneous equation (2).

Let $\boldsymbol{g} \in \mathscr{C}^{0}(I)$ and consider the equation (1). Pick an element $\boldsymbol{\psi}_{p}$ of $T^{-1}(\boldsymbol{g})$. Note that $\boldsymbol{\psi}_{p}$ is a solution of (1). In view of (1.1.4), we see that by varying $\left(c_{1}, \ldots, c_{n}\right)$ in \mathbf{R}^{n}, the expression

$$
\begin{equation*}
\boldsymbol{\psi}=c_{1} \boldsymbol{\varphi}_{1}+\cdots+c_{n} \boldsymbol{\varphi}_{n}+\boldsymbol{\psi}_{p} \tag{1.1.5.2}
\end{equation*}
$$

gives all solutions of (1). For a fixed solution $\boldsymbol{\psi}_{p}$ of (1) the correspondence between $\boldsymbol{c}=\left(c_{1}, \ldots, c_{n}\right) \in \mathbf{R}^{n}$ and $\boldsymbol{\psi}$ is bijective. In the expression for $\boldsymbol{\psi}$ in (1.1.5.2), $\boldsymbol{\psi}_{p}$ is called a particular solution of (1). The expression in (1.1.5.2), with c_{1}, \ldots, c_{n} arbitrary constants and $\boldsymbol{\psi}_{p}$ a fixed particular solution, is called the general solution to (1).

The general solution to (2) (i.e. expression in (1.1.5.1)) is also called the complementary solution to the (possibly) inhomogeneous equation (1). It is not a solution of (1) unless $\boldsymbol{g}=\mathbf{0}$, so the terminology can be confusing.

2. Variation of Parameters

In this section, in addition fixing the continuous function $A: I \rightarrow M_{n}(\mathbf{R})$, we also fix a continuous function $\boldsymbol{g}: I \rightarrow \mathbf{R}^{n}$. Equation (1), when invoked, will be with this \boldsymbol{g}.
2.1. Let $\boldsymbol{\varphi}_{1}, \ldots, \boldsymbol{\varphi}_{n}$ be a basis of S. Let M be the $n \times n$ matrix of \mathscr{C}^{1} functions on I given by

$$
M:=\left[\begin{array}{llll}
\boldsymbol{\varphi}_{1} & \boldsymbol{\varphi}_{2} & \ldots & \boldsymbol{\varphi}_{n}
\end{array}\right]
$$

Then, by Problem 3 of HW3, $M(t) \in G L_{n}(\mathbf{R})$ for $t \in I$. Thus we have a \mathscr{C}^{1} map:

$$
M: I \rightarrow G L_{n}(R)
$$

Suppose $\boldsymbol{\psi}$ is a solution to (1). Setting $\boldsymbol{u}=M^{-1} \boldsymbol{\psi}$, say $\boldsymbol{u}=\left(u_{1}, \ldots, u_{n}\right)$, we see that

$$
\boldsymbol{\psi}=u_{1} \boldsymbol{\varphi}_{1}+\cdots+u_{n} \boldsymbol{\varphi}_{n}
$$

We point out that $\boldsymbol{u}=\left(u_{1}, \ldots, u_{n}\right)$ is not a constant vector but a map from I to
\mathbf{R}^{n}, (for $\boldsymbol{\psi}$ is not a constant vector). This means $\boldsymbol{\psi}$ need not belong to S. The map $\boldsymbol{u}: I \rightarrow \mathbf{R}^{n}$ is in $\mathscr{C}^{1}(I)$ as the following argument shows. The map $B \mapsto B^{-1}$ is \mathscr{C}^{∞} on $G L_{n}(\mathbf{R})$ (see related argument in (10) of $\S 1$ of Lecture 7 of ANA2, noting that determinants and cofactors are polynomials in the coefficients and hence \mathscr{C}^{∞} functions of the coefficients). Since M is a \mathscr{C}^{1} map, this means that M^{-1} is \mathscr{C}^{1}. It follows that $\boldsymbol{u}=M^{-1} \boldsymbol{\psi}$ is in $\mathscr{C}^{1}(I)$, since $\boldsymbol{\psi} \in \mathscr{C}^{1}(I)$.

Now

$$
\dot{M}=\left[\begin{array}{llll}
\dot{\varphi}_{1} & \dot{\varphi}_{2} & \ldots & \dot{\varphi}_{n}
\end{array}\right]=\left[\begin{array}{llll}
A \varphi_{1} & A \varphi_{2} & \ldots & \varphi_{n} A \tag{2.1.1}
\end{array}\right]=A M .
$$

Hence

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t}(M \boldsymbol{u}) & =\dot{M} \boldsymbol{u}+M \dot{\boldsymbol{u}} \quad(\text { by Problem } 4 \text { of HW3) } \tag{2.1.2}\\
& =A M \boldsymbol{u}+M \dot{\boldsymbol{u}} \quad(\text { by }(2.1 .1))
\end{align*}
$$

On the other hand, since $\boldsymbol{\psi}=M \boldsymbol{u}$ is a solution of (1), we have

$$
\frac{\mathrm{d}}{\mathrm{~d} t}(M \boldsymbol{u})=A(M \boldsymbol{u})+\boldsymbol{g}
$$

Comparing this with (2.1.2) we get

$$
M \dot{\boldsymbol{u}}=\boldsymbol{g}
$$

Thus $\boldsymbol{u}(t)=\int(M(t))^{-1} \boldsymbol{g}(t) d t$, where the integral represents any primitive of $M^{-1} \boldsymbol{g}$ in I. A particular solution then is

$$
\begin{equation*}
\boldsymbol{\psi}=M \Phi \tag{2.1.3}
\end{equation*}
$$

where $\Phi: I \rightarrow \mathbf{R}^{n}$ is any primitive (i.e. anti-derivative) of $M^{-1} \boldsymbol{g}$ on I.
Remark 2.1.4. Here is a check for our calculations. Let Φ be any primitive of $M^{-1} \boldsymbol{g}$ on I. Then setting $\boldsymbol{\psi}=M \Phi$ we see that

$$
\dot{\psi}=\dot{M} \Phi+M \dot{\Phi}=A M \Phi+M\left(M^{-1} \boldsymbol{g}\right)=A \boldsymbol{\psi}+\boldsymbol{g}
$$

showing that $\boldsymbol{\psi}$ is a solution of (1).
If Φ^{*} is another primitive of $M^{-1} \boldsymbol{g}$ on I, then $\boldsymbol{\psi}^{*}=M \Phi^{*}$ is also a solution of $\dot{\boldsymbol{x}}=A \boldsymbol{x}+\boldsymbol{g}$ from the above considerations. Therefore, from (1.1.4), $\boldsymbol{\psi}$ and $\boldsymbol{\psi}^{*}$ differ by an element of S. There is another way of seeing this. Since Φ and Φ^{*} are both primitives of $M^{-1} \boldsymbol{g}$, there exists a unique constant vector $\boldsymbol{c}=\left(c_{1}, \ldots, c_{n}\right) \in \mathbf{R}^{n}$ such that $\Phi^{*}=\Phi+\boldsymbol{c}$. Now $\boldsymbol{\psi}^{*}=M \Phi^{*}=M(\Phi+\boldsymbol{c})=M \boldsymbol{c}+M \Phi=M \boldsymbol{c}+\boldsymbol{\psi}$. Now $M \boldsymbol{c}$ is a solution of the homogeneous DE associated to (1), namley the DE $\dot{x}=A \boldsymbol{x}$, and therefore $M \boldsymbol{c} \in S$. Thus $\boldsymbol{\psi}^{*}-\boldsymbol{\psi} \in S$.

References

[A1] V. I. Arnold, Ordinary Differential Equations, translated by Richard A. Silverman, MIT Press (also Prentice-Hall, India), Cambridge,MA, U.S.A., 1973.
[A2] V. I. Arnold, Ordinary Differential Equations, Third Edition, translated by Roger Cooke, Universitext, Springer-Verlag, Berlin, 2006.

[^0]: ${ }^{1}$ See $\S \S 2.1$ of Lecture 5 of ANA2.

