LECTURE 8

Date of Lecture: January 27, 2021

The symbol @ is for flagging a cautionary comment or a tricky argument. It
occurs in the margins and is Knuth’s version of Bourbaki’s “dangerous bend sym-
bol”.

An n-tuple (z1,...,z,) of symbols (z; not necessarily real or complex numbers)
will also be written as a column vector when convenient. Thus

z1
(1, xp) =
Tn
A map f from a set S to a product set T} x --- x T}, will often be written as

an n-tuple f = (f1,..., fn), with f; a map from S to T}, and hence, by the above
convention, as a column vector
h
f=1:
I
(See Remark 2.2.2 of Lecture 5 of ANA2.)

The default norm on Euclidean spaces of the form R is the Euclidean norm || ||2

and we will simply denote it as || ||. The space of R-linear transformations from

R™ to R™ will be denoted Homg (R™,R™) and will be identified in the standard
way with the space of m x n real matrices M, ,(R) and the operator norm® on

both spaces will be denoted || [|o. If m = n, we write M,,(R) for M,, »(R).
Note that (z1,...,2,) # [%1 ... z,]. Each side is the transpose of the other.

1. Linear Differential Equations

Let I C R be an interval (closed, open, half-open, but with non-empty interior).
Recall that a (vector valued) linear differential equation is a differential equation
of the form

(1) (1) = At)z(t) +g(t)

where A: I — M, (R) and g: I — R™ are continuous maps. Note that the extended
phase space is I x R™ and (1) is of the form & = v(¢, ) where v: [ x R" — R" is
given by the formula v(t,x) = A(¢)x(t) + g(t) for t € I and € R™. Tt is easy to
see, and this was shown in the proof of Theorem 1.1.1 of Lecture 7, that v is locally
Lipschitz in the second variable. In fact it was shown there that v is uniformly
Lipschitz on any rectangle of the form J x R™ where J is closed (i.e. compact)
interval in 1.

ISee §§2.1 of Lecture 5 of ANA2.
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If in the above, g(t) = 0 for every ¢t € I, then (1) is said to be a homogeneous
linear differential equation. Explicitly, a homogeneous differential equation on I is
an equation of the form

(2) (1) = A(t)z(t)

where A: I — M, (R) is a continuous function. Here v(t,z) = A(¢t)x for t € I and
x € R™. In Theorem 1.1.1 of Lecture 7 we showed that with A and g as above,
and (7,a) a fixed point in I x R", the IVP &(t) = v(t,x), (1) = a has unique
solution on all of I.

Assumption. For the rest of this lecture we fix I and A as above. In particular,
A is continuous.

1.1.  For a non-negative integer k, let €’*(I) be the short form of €*(I,R"), the
R-vector space of R"-valued ¢’* functions on I (with the usual convention of using
one-sided derivatives in the event a boundary point of I lies in I). A reminder:
€O(I) is the space of continuous R"-valued functions on I. Consider the map

eI L (1)

(1.1.1) .
fF— f—Af

It is clear that T is a linear transformation. Let

(1.1.2) S:=kerT.

It is clear that S is the set of solutions of the homogeneous differential equation (2).
In particular, S is an R-vector space in a natural way. It is a subspace of € (I).
As in Problem 5 of HW2 we see that

Theorem 1.1.3. Let S and T be as above.
(a) The map T: €*(I) — €°(I) is surjective.
(b) The vector space S is n-dimensional.

Proof. Given g € €°(I), we know that the differential equation (1) has solutions
on I by Theorem 1.1.1 of Lecture 7. Indeed fix to € I and a € R™, and we can find
a solution ¢ with the requirement that ¢(t) = a. Now, ¢ € 1) and Ty = g.
Thus T is surjective. This proves (a).

We now prove (b). Fix to € I and let

E=FE.,.S—R"
be the evaluation map given by

Ef = f(t).
E is clearly a linear transformation. If f € S is such that E(f) = 0, then f is a
solution to the IVP
= Az, z(t.)=0.
On the other hand, so is the constant function 0. By uniqueness of solutions to

IVPs, we see that f = 0. Thus E is an injective linear transformation.
Next suppose a € R™. We claim a = E f for some f € S. Consider the IVP

z=Azx, z(t)=a.
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This IVP has a unique solution f on I. Now, f € S and f(t.) = a. In other words
f €S and Ef =a. Thus F is surjective and hence we have

E: S = R"
This proves that S is n-dimensional. O

Since T is surjective, if g € €°(I), then T~!(g) # 0. This means, since S =
ker T', that T~1(g) is a coset of S. In fact if » € T~1(g), we have

(1.1.4) T (g) =S +.

We emphasise that (1.1.4) remains true whichever element v of T~!(g) we happen
to pick.

1.1.5. General solutions, particular solutions, and complementary solu-
tions. Let ¢q,..., ¢, be linearly independent elements of S. Since dimg S = n,
this is equivalent to saying ¢;,..., ¢, is a basis of S. An arbitrary element of S
can then be expressed as

(1.1.5.1) O =crp) -t e,

where ¢y, ..., ¢, are arbitrary constants. The expression in (1.1.5.1) (with arbitrary
constants ¢;, i = 1,...,n) is called the general solution to the homogeneous equation
(2).

Let g € €°(I) and consider the equation (1). Pick an element %, of T~'(g).
Note that 1, is a solution of (1). In view of (1.1.4), we see that by varying
(c1y...,¢n) in R™, the expression

(1.1.5.2) Y=cip;+ -t enp, + 9,

gives all solutions of (1). For a fixed solution 4, of (1) the correspondence between
c = (c1,...,¢,) € R" and 4 is bijective. In the expression for 9 in (1.1.5.2), v,
is called a particular solution of (1). The expression in (1.1.5.2), with ¢1,...,¢,
arbitrary constants and 1, a fixed particular solution, is called the general solution
to (1).

The general solution to (2) (i.e. expression in (1.1.5.1)) is also called the comple-
mentary solution to the (possibly) inhomogeneous equation (1). It is not a solution
of (1) unless g = 0, so the terminology can be confusing.

2. Variation of Parameters

In this section, in addition fixing the continuous function A: I — M, (R), we
also fix a continuous function g: I — R™. Equation (1), when invoked, will be with
this g.

2.1. Let ¢y,...,%, be a basis of S. Let M be the n x n matrix of ¢! functions
on I given by

M= [‘Pl P2 .- ‘Pn]
Then, by Problem 3 of HW3, M(t) € GL,(R) for t € I. Thus we have a ¢! map:
M:I— GL,(R).
Suppose 1 is a solution to (1). Setting w = M 14, say u = (uy,...,u,), we see
that
Y =u1p+ -+ Unp,.
We point out that w = (uq,...,u,) is not a constant vector but a map from I to
3
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R™, (for v is not a constant vector). This means 1 need not belong to S. The map
w: I — R" is in €1(I) as the following argument shows. The map B + B! is
¢ on GL,(R) (see related argument in (10) of §1 of Lecture 7 of ANA2, noting
that determinants and cofactors are polynomials in the coefficients and hence €°
functions of the coefficients). Since M is a €’* map, this means that M1 is 1. It
follows that w = M ~14p is in €*(I), since 9 € €1 (I).

Now
(2.1.1) M=[p, @3 - @,]=[Ap1 Apy ... @, A] =AM,
Hence
d :
(2.1.2) g (Mu) = Mu+Mé (by Problem 4 of HW3)

= AMu+ M (by (2.1.1)).
On the other hand, since 9 = Mwu is a solution of (1), we have

d
a(Mu) = A(Mu) +g.

Comparing this with (2.1.2) we get

Mu = g.
Thus u(t) = [(M(t))"'g(t)dt, where the integral represents any primitive of M ~'g
in I. A particular solution then is

(2.1.3) Y =M

where ®: I — R™ is any primitive (i.e. anti-derivative) of M ~'g on I.

Remark 2.1.4. Here is a check for our calculations. Let ® be any primitive of
M~'g on I. Then setting 1p = M® we see that

=MD+ MD=AMD+ M(M 'g)=Ap+g

showing that ) is a solution of (1).

If ®* is another primitive of M ~'g on I, then 9* = M®* is also a solution of
& = Az +g from the above considerations. Therefore, from (1.1.4), 1) and 1" differ
by an element of S. There is another way of seeing this. Since ® and ®* are both
primitives of M ~1g, there exists a unique constant vector ¢ = (cy,...,¢c,) € R®
such that ®* = ® + ¢. Now 9" = MP* = M(®+¢) = Mc+ MP = Mc + .
Now Me is a solution of the homogeneous DE associated to (1), namley the DE
# = Az, and therefore Mc € S. Thus ¥* — 1 € S.
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