LECTURE 8

Date of Lecture: January 27, 2021

The symbol P is for flagging a cautionary comment or a tricky argument. It occurs in the margins and is Knuth's version of Bourbaki's "dangerous bend symbol".

An *n*-tuple (x_1, \ldots, x_n) of symbols $(x_i \text{ not necessarily real or complex numbers}) will also be written as a column vector when convenient. Thus$

$$(x_1,\ldots,x_n) = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}.$$

A map f from a set S to a product set $T_1 \times \cdots \times T_n$ will often be written as an *n*-tuple $f = (f_1, \ldots, f_n)$, with f_i a map from S to T_i , and hence, by the above convention, as a column vector

$$oldsymbol{f} = egin{bmatrix} f_1 \ dots \ f_n \end{bmatrix}.$$

(See Remark 2.2.2 of Lecture 5 of ANA2.)

Ś

The default norm on Euclidean spaces of the form \mathbf{R}^n is the Euclidean norm $|| ||_2$ and we will simply denote it as || ||. The space of **R**-linear transformations from \mathbf{R}^n to \mathbf{R}^m will be denoted $\operatorname{Hom}_{\mathbf{R}}(\mathbf{R}^n, \mathbf{R}^m)$ and will be identified in the standard way with the space of $m \times n$ real matrices $M_{m,n}(\mathbf{R})$ and the operator norm¹ on both spaces will be denoted $|| ||_{\circ}$. If m = n, we write $M_n(\mathbf{R})$ for $M_{m,n}(\mathbf{R})$.

Note that $(x_1, \ldots, x_n) \neq [x_1 \ldots x_n]$. Each side is the transpose of the other.

1. Linear Differential Equations

Let $I \subset \mathbf{R}$ be an interval (closed, open, half-open, but with non-empty interior). Recall that a (vector valued) *linear differential equation* is a differential equation of the form

(1)
$$\dot{\boldsymbol{x}}(t) = A(t)\boldsymbol{x}(t) + \boldsymbol{g}(t)$$

where $A: I \to M_n(\mathbf{R})$ and $\mathbf{g}: I \to \mathbf{R}^n$ are continuous maps. Note that the extended phase space is $I \times \mathbf{R}^n$ and (1) is of the form $\dot{\mathbf{x}} = \mathbf{v}(t, \mathbf{x})$ where $\mathbf{v}: I \times \mathbf{R}^n \to \mathbf{R}^n$ is given by the formula $\mathbf{v}(t, \mathbf{x}) = A(t)\mathbf{x}(t) + \mathbf{g}(t)$ for $t \in I$ and $\mathbf{x} \in \mathbf{R}^n$. It is easy to see, and this was shown in the proof of Theorem 1.1.1 of Lecture 7, that \mathbf{v} is locally Lipschitz in the second variable. In fact it was shown there that \mathbf{v} is uniformly Lipschitz on any rectangle of the form $J \times \mathbf{R}^n$ where J is closed (i.e. compact) interval in I.

¹See §§2.1 of Lecture 5 of ANA2.

If in the above, g(t) = 0 for every $t \in I$, then (1) is said to be a homogeneous linear differential equation. Explicitly, a homogeneous differential equation on I is an equation of the form

(2)
$$\dot{\boldsymbol{x}}(t) = A(t)\boldsymbol{x}(t)$$

where $A: I \to M_n(\mathbf{R})$ is a continuous function. Here $\boldsymbol{v}(t, \boldsymbol{x}) = A(t)\boldsymbol{x}$ for $t \in I$ and $\boldsymbol{x} \in \mathbf{R}^n$. In Theorem 1.1.1 of Lecture 7 we showed that with A and \boldsymbol{g} as above, and (τ, \boldsymbol{a}) a fixed point in $I \times \mathbf{R}^n$, the IVP $\dot{\boldsymbol{x}}(t) = \boldsymbol{v}(t, \boldsymbol{x}), \ \boldsymbol{x}(\tau) = \boldsymbol{a}$ has unique solution on all of I.

Assumption. For the rest of this lecture we fix I and A as above. In particular, A is continuous.

Ŝ

1.1. For a non-negative integer k, let $\mathscr{C}^k(I)$ be the short form of $\mathscr{C}^k(I, \mathbf{R}^n)$, the **R**-vector space of \mathbf{R}^n -valued \mathscr{C}^k functions on I (with the usual convention of using one-sided derivatives in the event a boundary point of I lies in I). A reminder: $\mathscr{C}^0(I)$ is the space of continuous \mathbf{R}^n -valued functions on I. Consider the map

(1.1.1)
$$\begin{aligned} & \mathscr{C}^{1}(I) \xrightarrow{T} \mathscr{C}^{0}(I) \\ & \boldsymbol{f} \longmapsto \boldsymbol{\dot{f}} - A\boldsymbol{f} \end{aligned}$$

It is clear that T is a linear transformation. Let

$$(1.1.2) S := \ker T.$$

It is clear that S is the set of solutions of the homogeneous differential equation (2). In particular, S is an **R**-vector space in a natural way. It is a subspace of $\mathscr{C}^1(I)$. As in Problem 5 of HW2 we see that

Theorem 1.1.3. Let S and T be as above.

- (a) The map $T: \mathscr{C}^1(I) \to \mathscr{C}^0(I)$ is surjective.
- (b) The vector space S is n-dimensional.

Proof. Given $\boldsymbol{g} \in \mathscr{C}^0(I)$, we know that the differential equation (1) has solutions on I by Theorem 1.1.1 of Lecture 7. Indeed fix $t_o \in I$ and $\boldsymbol{a} \in \mathbf{R}^n$, and we can find a solution $\boldsymbol{\varphi}$ with the requirement that $\boldsymbol{\varphi}(t_o) = \boldsymbol{a}$. Now, $\boldsymbol{\varphi} \in \mathscr{C}(I)$ and $T\boldsymbol{\varphi} = \boldsymbol{g}$. Thus T is surjective. This proves (a).

We now prove (b). Fix $t_{\circ} \in I$ and let

$$E = E_{t_0} \colon S \longrightarrow \mathbf{R}^n$$

be the evaluation map given by

$$E \boldsymbol{f} = \boldsymbol{f}(t_{\circ}).$$

E is clearly a linear transformation. If $f \in S$ is such that E(f) = 0, then f is a solution to the IVP

$$\dot{\boldsymbol{x}} = A\boldsymbol{x}, \quad \boldsymbol{x}(t_{\circ}) = \boldsymbol{0}.$$

On the other hand, so is the constant function **0**. By uniqueness of solutions to IVPs, we see that f = 0. Thus E is an injective linear transformation.

Next suppose $a \in \mathbb{R}^n$. We claim a = Ef for some $f \in S$. Consider the IVP

$$\dot{\boldsymbol{x}} = A\boldsymbol{x}, \quad \boldsymbol{x}(t_\circ) = \boldsymbol{a}.$$

This IVP has a unique solution f on I. Now, $f \in S$ and $f(t_0) = a$. In other words $f \in S$ and Ef = a. Thus E is surjective and hence we have

$$E: S \xrightarrow{\sim} \mathbf{R}^n$$
.

This proves that S is n-dimensional.

Since T is surjective, if $\mathbf{g} \in \mathscr{C}^0(I)$, then $T^{-1}(\mathbf{g}) \neq \emptyset$. This means, since S =ker T, that $T^{-1}(\boldsymbol{g})$ is a coset of S. In fact if $\boldsymbol{\psi} \in T^{-1}(\boldsymbol{g})$, we have

$$(1.1.4) T^{-1}(\boldsymbol{g}) = S + \boldsymbol{\psi}$$

We emphasise that (1.1.4) remains true whichever element ψ of $T^{-1}(g)$ we happen to pick.

1.1.5. General solutions, particular solutions, and complementary solutions. Let $\varphi_1, \ldots, \varphi_n$ be linearly independent elements of S. Since dim_{**R**} S = n, this is equivalent to saying $\varphi_1, \ldots, \varphi_n$ is a basis of S. An arbitrary element of S can then be expressed as

(1.1.5.1)
$$\boldsymbol{\varphi} = c_1 \boldsymbol{\varphi}_1 + \dots + c_n \boldsymbol{\varphi}_n$$

where c_1, \ldots, c_n are arbitrary constants. The expression in (1.1.5.1) (with arbitrary constants $c_i, i = 1, ..., n$ is called the general solution to the homogeneous equation (2).

Let $\boldsymbol{g} \in \mathscr{C}^0(I)$ and consider the equation (1). Pick an element $\boldsymbol{\psi}_p$ of $T^{-1}(\boldsymbol{g})$. Note that ψ_p is a solution of (1). In view of (1.1.4), we see that by varying (c_1,\ldots,c_n) in \mathbf{R}^n , the expression

(1.1.5.2)
$$\boldsymbol{\psi} = c_1 \boldsymbol{\varphi}_1 + \dots + c_n \boldsymbol{\varphi}_n + \boldsymbol{\psi}_n$$

gives all solutions of (1). For a fixed solution ψ_p of (1) the correspondence between $\boldsymbol{c} = (c_1, \ldots, c_n) \in \mathbf{R}^n$ and $\boldsymbol{\psi}$ is bijective. In the expression for $\boldsymbol{\psi}$ in (1.1.5.2), $\boldsymbol{\psi}_n$ is called a *particular solution of* (1). The expression in (1.1.5.2), with c_1, \ldots, c_n arbitrary constants and ψ_p a fixed particular solution, is called the *general solution* to (1).

The general solution to (2) (i.e. expression in (1.1.5.1)) is also called the complementary solution to the (possibly) inhomogeneous equation (1). It is not a solution of (1) unless g = 0, so the terminology can be confusing.

2. Variation of Parameters

In this section, in addition fixing the continuous function $A: I \to M_n(\mathbf{R})$, we also fix a continuous function $g: I \to \mathbb{R}^n$. Equation (1), when invoked, will be with this \boldsymbol{g} .

2.1. Let $\varphi_1, \ldots, \varphi_n$ be a basis of S. Let M be the $n \times n$ matrix of \mathscr{C}^1 functions on I given by

$$M := \begin{bmatrix} \varphi_1 & \varphi_2 & \dots & \varphi_n \end{bmatrix}.$$

Then, by Problem 3 of HW3, $M(t) \in GL_n(\mathbf{R})$ for $t \in I$. Thus we have a \mathscr{C}^1 map: $M: I \to GL_n(R).$

Suppose ψ is a solution to (1). Setting $\boldsymbol{u} = M^{-1}\psi$, say $\boldsymbol{u} = (u_1, \ldots, u_n)$, we see that

$$\boldsymbol{\psi} = u_1 \boldsymbol{\varphi}_1 + \dots + u_n \boldsymbol{\varphi}_n.$$

We point out that $\boldsymbol{u} = (u_1, \ldots, u_n)$ is not a constant vector but a map from I to

 \mathbf{R}^n , (for $\boldsymbol{\psi}$ is not a constant vector). This means $\boldsymbol{\psi}$ need not belong to S. The map $\boldsymbol{u} \colon I \to \mathbf{R}^n$ is in $\mathscr{C}^1(I)$ as the following argument shows. The map $B \mapsto B^{-1}$ is \mathscr{C}^{∞} on $GL_n(\mathbf{R})$ (see related argument in (10) of §1 of Lecture 7 of ANA2, noting that determinants and cofactors are polynomials in the coefficients and hence \mathscr{C}^{∞} functions of the coefficients). Since M is a \mathscr{C}^1 map, this means that M^{-1} is \mathscr{C}^1 . It follows that $\boldsymbol{u} = M^{-1}\boldsymbol{\psi}$ is in $\mathscr{C}^1(I)$, since $\boldsymbol{\psi} \in \mathscr{C}^1(I)$.

Now

(2.1.1)
$$\dot{M} = \begin{bmatrix} \dot{\varphi}_1 & \dot{\varphi}_2 & \dots & \dot{\varphi}_n \end{bmatrix} = \begin{bmatrix} A\varphi_1 & A\varphi_2 & \dots & \varphi_n A \end{bmatrix} = AM.$$

Hence

(2.1.2)
$$\frac{\mathrm{d}}{\mathrm{d}t}(M\boldsymbol{u}) = \dot{M}\boldsymbol{u} + M\dot{\boldsymbol{u}} \qquad \text{(by Problem 4 of HW3)}$$
$$= AM\boldsymbol{u} + M\dot{\boldsymbol{u}} \qquad \text{(by (2.1.1))}.$$

On the other hand, since $\psi = Mu$ is a solution of (1), we have

$$\frac{\mathrm{d}}{\mathrm{d}t}(M\boldsymbol{u}) = A(M\boldsymbol{u}) + \boldsymbol{g}$$

Comparing this with (2.1.2) we get

$$M\dot{u} = g$$

Thus $\boldsymbol{u}(t) = \int (M(t))^{-1} \boldsymbol{g}(t) dt$, where the integral represents any primitive of $M^{-1}\boldsymbol{g}$ in *I*. A particular solution then is

$$(2.1.3) \qquad \qquad \psi = M\Phi$$

where $\Phi: I \to \mathbf{R}^n$ is any primitive (i.e. anti-derivative) of $M^{-1}g$ on I.

Remark 2.1.4. Here is a check for our calculations. Let Φ be any primitive of $M^{-1}g$ on I. Then setting $\psi = M\Phi$ we see that

$$\dot{\boldsymbol{\psi}} = \dot{M}\Phi + M\dot{\Phi} = AM\Phi + M(M^{-1}\boldsymbol{g}) = A\boldsymbol{\psi} + \boldsymbol{g}$$

showing that $\boldsymbol{\psi}$ is a solution of (1).

If Φ^* is another primitive of $M^{-1}g$ on I, then $\psi^* = M\Phi^*$ is also a solution of $\dot{\boldsymbol{x}} = A\boldsymbol{x} + \boldsymbol{g}$ from the above considerations. Therefore, from (1.1.4), ψ and ψ^* differ by an element of S. There is another way of seeing this. Since Φ and Φ^* are both primitives of $M^{-1}\boldsymbol{g}$, there exists a unique constant vector $\boldsymbol{c} = (c_1, \ldots, c_n) \in \mathbb{R}^n$ such that $\Phi^* = \Phi + \boldsymbol{c}$. Now $\psi^* = M\Phi^* = M(\Phi + \boldsymbol{c}) = M\boldsymbol{c} + M\Phi = M\boldsymbol{c} + \psi$. Now $M\boldsymbol{c}$ is a solution of the homogeneous DE associated to (1), namley the DE $\dot{\boldsymbol{x}} = A\boldsymbol{x}$, and therefore $M\boldsymbol{c} \in S$. Thus $\psi^* - \psi \in S$.

References

- [A1] V. I. Arnold, Ordinary Differential Equations, translated by Richard A. Silverman, MIT Press (also Prentice-Hall, India), Cambridge, MA, U.S.A., 1973.
- [A2] V. I. Arnold, Ordinary Differential Equations, Third Edition, translated by Roger Cooke, Universitext, Springer-Verlag, Berlin, 2006.