
LECTURE 7

Date of Lecture: January 25, 2021

The symbol � is for flagging a cautionary comment or a tricky argument. It
occurs in the margins and is Knuth’s version of Bourbaki’s “dangerous bend sym-
bol”.

An n-tuple (x1, . . . , xn) of symbols (xi not necessarily real or complex numbers)
will also be written as a column vector when convenient. Thus

(x1, . . . , xn) =

x1...
xn

 .
A map f from a set S to a product set T1 × · · · × Tn will often be written as

an n-tuple f = (f1, . . . , fn), with fi a map from S to Ti, and hence, by the above
convention, as a column vector

f =

f1...
fn

 .
(See Remark 2.2.2 of Lecture 5 of ANA2.)

The default norm on Euclidean spaces of the form Rn is the Euclidean norm ‖ ‖2
and we will simply denote it as ‖ ‖. The space of R-linear transformations from
Rn to Rm will be denoted HomR(Rn,Rm) and will be identified in the standard
way with the space of m × n real matrices Mm,n(R) and the operator norm1 on
both spaces will be denoted ‖ ‖◦. If m = n, we write Mn(R) for Mm,n(R).

Note that (x1, . . . , xn) 6= [x1 . . . xn]. Each side is the transpose of the other.�

1. First Order Linear Equations

1.1. The main theorem we will prove today is the following.

Theorem 1.1.1. Let I ⊂ R be an interval (closed, open, half-open), A : I →
Mn(R) and g : I → Rn continuous maps. Let (t0,a0) ∈ I ×Rn. Then the IVP{

ẋ = A(t)x(t) + g(t)
x(t0) = a0

has a unique solution on I.

Proof. If I is open or half-open, we can find an increasing sequence of compact
intervals {In} with t0 ∈ In ⊂ I such that ∪nIn = I. So without loss of generality,we
may assume I is compact, for the unique solutions on each In guarantee that they
glue, and any solution of the IVP on I restricts to a solution on In,necessarily the
unique solution on In.

1See §§2.1 of Lecture 5 of ANA2.
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Suppose I = [c, d] is a compact. Then

v : I ×Rn −→ Rn

given by

v(t,x) = A(t)x+ g(t) ((t, x) ∈ I ×Rn)

is Lipschitz in x. To see this, observe that since I is compact, and A is continuous,
‖A(t)‖◦ is bounded for t ∈ I, where ‖ · ‖◦ is the operator norm on Mn(R). Let

L = sup
t∈I
‖A(t)‖◦ .

Then L <∞ and

‖v(t,x)− v(t,y)‖ = ‖A(t)(x− y)‖ ≤ L‖x− y‖,

proving the assertion. The Lipschitz constant is L.
Let

M = sup
t∈I
‖g(t)‖.

Then (as g is continuous and I is compact), M <∞.
For η > 0, we can extend A to Iη = (c − η, d + η) by setting A(t) = A(c) for

t ∈ (c − η, c) and A(t) = A(d) for t ∈ (d, d + η). Then A is continuous on Iη.
Similarly, we may extend g in a continuous fashion to Iη, by setting g(t) = g(c) on
(c− η, c) and g(t) = g(d) on (d, d+ η). The bounds for ‖A(t)‖◦ and ‖g(t)‖ remain
L and M respectively on Iη. Thus, if v is extended to Iη × Rn via the formula
v(t,x) = A(t)x+ g(t) then it remains Lipschitz on this larger space with the same
Lipschitz constant L.

The IVP can be extended to Ω = Iη×Rn and the extended IVP can be re-written
as

(∗)
{
ẋ(t) = v(t, x)
x(t0) = a0

By [Lecture 20, Thm. 1.2.1], which applies since v(t, x) is Lipschitz in x on Ω, there
is a maximal interval of existence (ω−, ω+) ⊂ Iη for (∗). We point out that since
(ω−, ω+) ⊂ Iη, ω+ < ∞ and −∞ < ω−. We will show below that (ω−, ω+) = Iη.
This will complete the proof of the theorem.

Let ϕ◦ : (ω−, ω+)→ Ω be the unique solution to the IVP (∗). Then

ϕ◦(t) = a0 +

∫ t

t0

A(s)ϕ◦ (s) ds+

∫ t

t0

g(s)ds (t ∈ (ω+, ω−)).

Let

K = ‖a0‖+M(ω+ − t0).
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Taking norms, and for simplicity picking t ∈ [t0, ω+), we get:

(†)

‖ϕ◦(t)‖ ≤ ‖a0‖+

∫ t

t0

‖A(s)ϕ◦(s)‖ ds+

∫ t

t0

‖g(s)‖ds

≤ ‖a0‖+

∫ t

t0

‖A(s)‖◦‖ϕ◦(s)‖ ds+M(t− t0)

≤ ‖a0‖+ L

∫ t

t0

‖ϕ◦(s)‖ ds+M(t− t0)

≤ ‖a0‖+

∫ t

t0

‖A(s)‖◦‖ϕ◦(s)‖ ds+M(t− t0)

≤ ‖a0‖+M(ω+ − t0) + L

∫ t

t0

‖ϕ◦(s)‖ ds

= K + L

∫ t

t0

‖ϕ◦(s)‖ ds

Let

f(t) =

∫ t

t0

‖ϕ◦(s)‖ ds.

Then, for t ∈ [t0, ω+) we have f ′(t) ≤ K + Lf(t), which can be re-written as

f ′(t)− Lf(t) ≤ K.

Multiplying both sides by the “integrating factor” e−Lt we get e−Lt(f ′(t)−Lf(t)) ≤
Ke−Lt which is equivalent to

d

dt
(e−Ltf(t)) ≤ Ke−Lt.

Integrating from t0 to t (and noting that f(t0) = 0) we get

e−Ltf(t) ≤ K
∫ t

t0

e−Lsds

=
K

L
(e−Lt0 − e−Lt).

This yields

f(t) ≤ K

L

(
eL(t−t0) − 1

)
.

Substitute this back in (†) to get:

‖ϕ◦(t)‖ ≤ K +K
(
eL(t−t0) − 1

)
= KeL(t−t0)

≤ KeL(ω+−t0)

It follows that ‖ϕ◦(t)‖ is bounded in [t0, ω+). By Corollary 1.1.3 of Lecture 6, this
means ω+ = d+ η. Similarly ω− = c− η. This completes the proof. �

We deduce immediately, as in Problem (5) of Homework 2:

Corollary 1.1.2. If g(t) ≡ 0 for t ∈ I, then the space of solutions to the underlying
DE

.
x = Ax in Theorem 1.1.1 is an n-dimensional vector space over R.

3

https://www.cmi.ac.in/~pramath/DEQN21/Lectures/Lecture6.pdf
https://www.cmi.ac.in/~pramath/DEQN21/HW/HW2.pdf


2. Some Pictures

Here are some pictures indicating how phase flows are affected by initial data.
The planes represent {t}×M , where M is the phase space, and t = −1, 0, 1. Assume
we are given a continuous locally Lipschitz map v : Ω→ R2 where Ω ⊂ R×R2.

Figure 1. Two phase flows for the same DE with different initial conditions.

The plane on the left represents {−1} ×R2, the middle one {0} ×R2, and the
one on the right {1} × R2. The maximal interval of existence (ω−, ω+) contains
[−1, 1]. Let ξ0 = (t0,a0) be the blue dot on the plane at t = −1, and ξ1 = (t1,a1)
the red dot on the plane t = 0. The blue curve is the phase curve for the initial
data ξ0 and the red curve the phase curve for the initial data ξ1. If we replace ξ0
with any other blue dot, we get the same phase curve (the blue one). Similarly, we
may replace ξ1 with any other red dot. In fact, ξ1 may be replaced by any point
on the corresponding curve passing through it.

Here are two more angles of the same phase curves (just because there is space
for their pictures):
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Figure 2.

Figure 3.
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