LECTURE 6

Date of Lecture: January 20, 2021
The symbol is for flagging a cautionary comment or a tricky argument. It occurs in the margins and is Knuth's version of Bourbaki's "dangerous bend symbol".

An n-tuple $\left(x_{1}, \ldots, x_{n}\right)$ of symbols (x_{i} not necessarily real or complex numbers) will also be written as a column vector when convenient. Thus

$$
\left(x_{1}, \ldots, x_{n}\right)=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

A map \boldsymbol{f} from a set S to a product set $T_{1} \times \cdots \times T_{n}$ will often be written as an n-tuple $\boldsymbol{f}=\left(f_{1}, \ldots, f_{n}\right)$, with f_{i} a map from S to T_{i}, and hence, by the above convention, as a column vector

$$
\boldsymbol{f}=\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right]
$$

(See Remark 2.2.2 of Lecture 5 of ANA2.)
The default norm on Euclidean spaces of the form \mathbf{R}^{n} is the Euclidean norm $\left\|\|_{2}\right.$ and we will simply denote it as $\|\|$. The space of \mathbf{R}-linear transformations from \mathbf{R}^{n} to \mathbf{R}^{m} will be denoted $\operatorname{Hom}_{\mathbf{R}}\left(\mathbf{R}^{n}, \mathbf{R}^{m}\right)$ and will be identified in the standard way with the space of $m \times n$ real matrices $M_{m, n}(\mathbf{R})$ and the operator norm ${ }^{1}$ on both spaces will be denoted $\left\|\|_{0}\right.$. If $m=n$, we write $M_{n}(\mathbf{R})$ for $M_{m, n}(\mathbf{R})$.

Note that $\left(x_{1}, \ldots, x_{n}\right) \neq\left[x_{1} \ldots x_{n}\right]$. Each side is the transpose of the other.

1. Solutions in the locally Lipschitz case

The proofs here are based on the ones given in [G].
1.1. Existence and uniqueness for locally Lipschitz v. Please refer to Lecture 5 for the definition of an interval of existence as well as that of a maximal interval of existence.

Theorem 1.1.1. Suppose Ω is a domain in $\mathbf{R} \times \mathbf{R}^{n}$ and $\boldsymbol{v}: \Omega \rightarrow \mathbf{R}^{n}$ is a locally Lipschitz continous in \boldsymbol{x}. Fix $\left(t_{0}, \boldsymbol{a}_{\mathbf{0}}\right) \in \Omega$. Then the IVP

$$
\left\{\begin{array}{c}
\dot{\boldsymbol{x}}=\boldsymbol{v}(t, \boldsymbol{x}) \tag{*}\\
\boldsymbol{x}\left(t_{0}\right)=\boldsymbol{a}_{\mathbf{0}}
\end{array}\right.
$$

has a maximal interval of existence, and is of the form $\left(\omega_{-}, \omega_{+}\right)$, with $\omega_{-} \in$ $[-\infty, \infty)$ and $\omega_{+} \in(-\infty, \infty]$. There is a unique solution

$$
\boldsymbol{\varphi}_{\circ}=\boldsymbol{\varphi}_{\left(t_{0}, a_{0}\right)}:\left(\omega_{-}, \omega_{+}\right) \rightarrow \mathbf{R}^{n}
$$

[^0]of $(*)$ on $\left(\omega_{-}, \omega_{+}\right)$and any solution of $(*)$ on an interval I containing t_{0} is the restriction of φ_{\circ} to I. The variable point $\left(t, \boldsymbol{\varphi}_{\circ}(t)\right)$ leaves every compact subset K of Ω as $t \downarrow \omega_{-}$and as $t \uparrow \omega_{+}$.

Proof. By the Picard-Lindelöf theorem, the DE $\dot{\boldsymbol{x}}=\boldsymbol{v}(t, \boldsymbol{x})$ has locally unique solutions for every initial data point (τ, \boldsymbol{a}) in Ω and so the material covered in Lecture 5 applies. Most of the theorem has proved in the last two lectures. It remains to prove that $\left(t, \varphi_{\circ}(t)\right)$ leaves any given compact subset of Ω as $t \downarrow \omega_{-}$and as $t \uparrow \omega_{+}$.

It may be useful to look at the figure below while reading the rest of the proof.

Suppose $K \subset \Omega$ is a compact subset. If $(t, \boldsymbol{a}) \in K$, we can find positive numbers $\alpha(t, \boldsymbol{a})$ and $\rho(t, \boldsymbol{a})$ such that

$$
[t-2 \alpha(t, \boldsymbol{a}), t+2 \alpha(t, \boldsymbol{a})] \times \bar{B}(\boldsymbol{a}, 2 \rho(t, \boldsymbol{a})) \subset \Omega
$$

and such that $\boldsymbol{v}(t, \boldsymbol{x})$ is uniformly Lipschitz in \boldsymbol{x} on $[t-2 \alpha(t, \boldsymbol{a}), t+2 \alpha(t, \boldsymbol{a})] \times$ $\bar{B}(\boldsymbol{a}, 2 \rho(t, \boldsymbol{a}))$. Note the factor of 2 everywhere. Since sets of the form $(t-\alpha(t, \boldsymbol{a}), t+$ $\alpha(t, \boldsymbol{a})) \times B(\boldsymbol{a}, \rho(t, \boldsymbol{a}))$ form an open cover of K as (t, \boldsymbol{a}) varies in K, there exist $\left(t_{i}, \boldsymbol{a}_{\boldsymbol{i}}\right) \in K, i=1, \ldots, m$ such that, with $\rho_{i}=\rho\left(t_{i}, \boldsymbol{a}_{\boldsymbol{i}}\right)$ and $\alpha_{i}=\alpha\left(t_{i}, \boldsymbol{a}_{\boldsymbol{i}}\right)$ for $i=1, \ldots, m$, we have the inclusion:

$$
K \subset \bigcup_{i=1}^{m}\left(t_{i}-\alpha_{i}, t_{i}+\alpha_{i}\right) \times B\left(\boldsymbol{a}_{\boldsymbol{i}}, \rho_{i}\right)
$$

Let

$$
K^{\prime}=\bigcup_{i=1}^{m}\left[t_{i}-2 \alpha_{i}, t_{i}+2 \alpha_{i}\right] \times \bar{B}\left(\boldsymbol{a}_{i}, 2 \rho_{i}\right)
$$

Then K^{\prime} is compact and $K^{\prime} \subset \Omega$. Let $M=\sup _{(t, \boldsymbol{a}) \in K^{\prime}}|\boldsymbol{v}(t, \boldsymbol{a})|, \alpha=\min _{1 \leq i \leq m} \alpha_{i}$, $r=\min _{1 \leq i \leq m} \rho_{i}$, and

$$
b=\min \left\{\alpha, \frac{r}{M}\right\}
$$

Suppose $(\tau, \boldsymbol{a}) \in K$. Then, $(\tau, \boldsymbol{a}) \in\left[t_{i}-\alpha_{i}, t_{i}+\alpha_{i}\right] \times \bar{B}\left(\boldsymbol{a}_{\boldsymbol{i}}, \rho_{i}\right)$ for some $i \in$ $\{1, \ldots, m\}$. By the triangle inequality, it follows that for this i we have

$$
[\tau-\alpha, \tau+\alpha] \times \bar{B}(\boldsymbol{a}, r) \subset\left[t_{i}-2 \alpha_{i}, t_{i}+2 \alpha_{i}\right] \times \bar{B}\left(\boldsymbol{a}_{\boldsymbol{i}}, 2 \rho_{i}\right)
$$

Thus $\boldsymbol{v}(t, \boldsymbol{x})$ is uniformly Lipschitz in \boldsymbol{x} on $[\tau-\alpha, \tau+\alpha] \times \bar{B}(\boldsymbol{a}, r)$ and further $[\tau-\alpha, \tau+\alpha] \times \bar{B}(\boldsymbol{a}, r) \subset K^{\prime}$. By the Picard-Lindelöf theorem, we have a unique solution $\boldsymbol{\varphi}_{(\tau, \boldsymbol{a})}$ to the IVP $\dot{\boldsymbol{x}}=\boldsymbol{v}(t, \boldsymbol{x}), \boldsymbol{x}(\tau)=\boldsymbol{a}$, such that $[\tau-b, \tau+b]$ is an interval of existence, where b is as in (\dagger). In particular $\left[t_{0}-b, t_{0}+b\right]$ is an interval of existence for $(*)$, which means $\left[t_{0}-b, t_{0}+b\right] \subset\left(\omega_{-}, \omega_{+}\right)$, whence $\left(\omega_{-}, \omega_{+}\right)$has length strictly greater than $2 b$.

Let us return to our IVP $(*)$ and its unique solution φ_{\circ} on $\left(\omega_{-}, \omega_{+}\right)$. If $\omega_{+}=\infty$, then $\tau_{\text {max }}:=\sup \left\{\tau \in\left(\omega_{-}, \infty\right) \mid\left(\tau, \varphi_{\circ}(\tau)\right) \in K\right\}$ is a real number in $\left(\omega_{-}, \infty\right)$, and $\left(\tau, \boldsymbol{\varphi}_{\circ}(\tau)\right) \notin K$ for $\tau>\tau_{\max }$. Similarly, if $\omega_{-}=-\infty$ we can find $\tau_{\min } \in\left(-\infty, \omega_{+}\right)$ such that $\left(\tau, \varphi_{\circ}(\tau)\right) \notin K$ for $\tau<\tau_{\text {min }}$. Now assume $\omega_{+}<\infty$. By the parts of the theorem that we have already proved (see section on maximal intervals of existence in Lecture 5 as well as the Picard-Lindelöf theorem in Lecture 4) it is clear that if $\tau \in\left(\omega_{-}, \omega_{+}\right)$and $\boldsymbol{a}=\boldsymbol{\varphi}_{\circ}(\tau)$, then $\boldsymbol{\varphi}_{\circ}=\boldsymbol{\varphi}_{(\tau, a)}$ and the maximal interval of existence of $\boldsymbol{\varphi}_{(\tau, a)}$ is also $\left(\omega_{-}, \omega_{+}\right)$. Now suppose $\left(\tau, \boldsymbol{\varphi}_{\circ}(\tau)\right) \in K$ for some $\tau \in\left(\omega_{-}, \omega_{+}\right)$. From our earlier observations, $[\tau-b, \tau+b]$ is an interval of existence for $\boldsymbol{\varphi}_{(\tau, \boldsymbol{a})}$ where $\boldsymbol{a}=\boldsymbol{\varphi}_{\circ}(\tau)$. This means $\omega_{-}<\tau-b$ and $\tau+b<\omega_{+}$. In other words, if if $\omega_{+}-b \leq \tau<\omega_{+}$, then $\left(\tau, \varphi_{\circ}(\tau)\right) \notin K$. Similarly, if $\omega_{-}>-\infty$ then $\left(\tau, \varphi_{\circ}(\tau)\right) \notin K$ whenever $\omega_{-}<\tau \leq \omega_{-}+b$. This proves the theorem.
1.1.2. The crucial point in the proof of the statement about compact subsets of Ω is this: Given a compact subset K of Ω, we have a positive real number $b=b_{K}$ such that for every $(\tau, \boldsymbol{a}) \in K$, the open interval $(\tau-b, \tau+b)$ is an interval of existence for the IVP $\dot{\boldsymbol{x}}=\boldsymbol{v}(t, \boldsymbol{x}), \boldsymbol{x}(\tau)=\boldsymbol{a}$. The number b can be chosen as in (\dagger) above. This has the following consequence:

> Given a point $(\tau, \boldsymbol{a}) \in \Omega$, there exists an open neighbouhood $W_{(\tau, \boldsymbol{a})}$ of (τ, \boldsymbol{a}) in Ω and a positive number $b=b_{(\tau, \boldsymbol{a})}$ such that for every $(\theta, \boldsymbol{y}) \in W_{(\tau, \boldsymbol{a})}$ the interval $(\theta-b, \theta+b)$ is an interval of existence for the $I V P \dot{x}=\boldsymbol{v}(t, \boldsymbol{x}), \boldsymbol{x}(\theta)=\boldsymbol{y}$

Indeed, one can pick an open rectangle $(\tau-2 \eta, \tau+2 \eta) \times B(\boldsymbol{a}, 2 r)$ which lies entirely in Ω. Then $K=[\tau-\eta, \tau+\eta] \times \bar{B}(\boldsymbol{a}, r)$ is a compact subset of Ω, and if we pick $b=b_{K}$ for this $K($ as in $(\dagger))$, and $W_{(\tau, \boldsymbol{a})}=(\tau-\eta, \tau+\eta) \times B(\boldsymbol{a}, r)$, we are done. This result will be used later when we work with manifolds.

Corollary 1.1.3. If $U \subset \mathbf{R}^{n}$ is a bounded set and $\Omega=(c, d) \times U$ with (c, d) an open interval in \mathbf{R}, then either $\omega_{+}=d$ or $\varphi_{\circ}(t) \rightarrow \partial U$ as $t \uparrow \omega_{+}$, and either $\omega_{-}=c$ or $\boldsymbol{\varphi}_{\circ}(t) \rightarrow \partial U$ as $t \downarrow \omega_{-}$.

Proof. Suppose $\omega_{+} \neq d$. Then $\omega_{+}<d$ and $-\epsilon+\omega_{+} \in(c, d)$ for sufficiently small ϵ. Let $f: \mathbf{R}^{n} \rightarrow[0, \infty)$ be the function given by the formula:

$$
f(x)=\inf _{\boldsymbol{z} \in \partial U}\|\boldsymbol{x}-\boldsymbol{z}\|
$$

Since ∂U is a closed subset of \mathbf{R}^{n}, f is continuous. For $\epsilon>0$, let

$$
\Gamma_{\epsilon}=\{\boldsymbol{x} \in U \mid f(\boldsymbol{x}) \geq \epsilon\}
$$

and

$$
K_{\epsilon}=\left[-\epsilon+\omega_{+}, \omega_{+}\right] \times \Gamma_{\epsilon} .
$$

K_{ϵ} is compact and for sufficiently small ϵ, K_{ϵ} is a non-empty subset of Ω. From the theorem, $\left(t, \boldsymbol{\varphi}_{\circ}(t)\right)$ exits K_{ϵ}. It cannot exit anywhere in $\left\{\omega_{+}\right\} \times \Gamma_{\epsilon}$, for φ_{\circ} does not make sense at $t=\omega_{+}$. Thus there exists $\tau_{\epsilon} \in\left[-\epsilon+\omega_{+}, \omega_{+}\right)$such that $f\left(\boldsymbol{\varphi}_{\circ}(t)\right)<\epsilon$ for all $t \in\left[\tau_{\epsilon}, \omega_{+}\right)$. This proves that $\varphi_{\circ}(t) \rightarrow \partial U$ as $t \uparrow \omega_{+}$. Similarly, if $\omega_{-} \neq c$ then $\varphi_{\circ}(t) \rightarrow \partial U$ as $t \downarrow \omega_{-}$.
Corollary 1.1.4. If $\Omega=(c, d) \times \mathbf{R}^{n},(c, d)$ an open interval in \mathbf{R}, then either $\omega_{+}=d$ or $\left\|\varphi_{\circ}(t)\right\| \rightarrow \infty$ as $t \uparrow \omega_{+}$, and either $\omega_{-}=c$ or $\left\|\varphi_{\circ}(t)\right\| \rightarrow \infty$ as $t \downarrow \omega_{-}$.
Proof. Suppose $\omega_{+} \neq d$. Then $\omega_{+}<d$ and for n sufficiently large, $-\frac{1}{n}+\omega_{+} \in(c, d)$. This time consider

$$
K_{n}=\left[-\frac{1}{n}+\omega_{+}, \omega_{+}\right] \times \bar{B}(\mathbf{0}, n)
$$

Then K_{n} is compact. Repeating the argument used towards the end of the proof of the previous corollary, we can find $\tau_{n} \in\left[-\frac{1}{n}+\omega_{+}, \omega_{+}\right)$such that $\left\|\varphi_{\circ}(t)\right\| \geq n$ for all $t \in\left[\tau_{n}, \omega_{+}\right)$. This proves that $\left\|\varphi_{\circ}(t)\right\| \rightarrow \infty$ as $t \uparrow \omega_{+}$. Similarly if $\omega_{-} \neq c$ then $\left\|\varphi_{\circ}(t)\right\| \rightarrow \infty$ as $t \downarrow \omega_{-}$.

References

[A1] V. I. Arnold, Ordinary Differential Equations, translated by Richard A. Silverman, MIT Press (also Prentice-Hall, India), Cambridge,MA, U.S.A., 1973.
[A2] V. I. Arnold, Ordinary Differential Equations, Third Edition, translated by Roger Cooke, Universitext, Springer-Verlag, Berlin, 2006.
[G] C.P. Grant, Theory of Ordinary Differential Equations. https://www.math.utah.edu/ ~treiberg/GrantTodes2008.pdf, Brigham Young University.

[^0]: ${ }^{1}$ See $\S \S 2.1$ of Lecture 5 of ANA2.

