LECTURE 6

Date of Lecture: January 20, 2021

The symbol @ is for flagging a cautionary comment or a tricky argument. It
occurs in the margins and is Knuth’s version of Bourbaki’s “dangerous bend sym-
bol”.

An n-tuple (z1,...,z,) of symbols (z; not necessarily real or complex numbers)
will also be written as a column vector when convenient. Thus

T
(T1,...,2p) =
T,
A map f from a set S to a product set T} x --- x T}, will often be written as

an n-tuple f = (f1,..., fn), with f; a map from S to T}, and hence, by the above
convention, as a column vector

S
r=1:
fn
(See Remark 2.2.2 of Lecture 5 of ANA2.)

The default norm on Euclidean spaces of the form R is the Euclidean norm || ||2

and we will simply denote it as || ||. The space of R-linear transformations from

R™ to R™ will be denoted Homg (R™, R™) and will be identified in the standard

way with the space of m x n real matrices M, ,(R) and the operator norm® on

both spaces will be denoted || [|o. If m = n, we write M,,(R) for M,, »(R).
Note that (z1,...,2,) # [21... x,]. Each side is the transpose of the other.

1. Solutions in the locally Lipschitz case

The proofs here are based on the ones given in [G].

1.1. Existence and uniqueness for locally Lipschitz v. Please refer to Lecture
5 for the definition of an interval of existence as well as that of a maximal interval
of existence.

Theorem 1.1.1. Suppose Q is a domain in R x R™ and v: Q — R"™ is a locally
Lipschitz continous in x. Fix (tg,ag) € Q. Then the IVP

() { z = wv(t,x)

w(to) = Qg

has a mazimal interval of existence, and is of the form (w_,wy), with w_ €
[—00,00) and wy € (—o0,00]. There is a unique solution

Po = P(to,a0)" (w—ws+) — R"

ISee §§2.1 of Lecture 5 of ANA2.
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of (x) on (w—,wy) and any solution of (x) on an interval I containing to is the
restriction of ¢, to I. The variable point (t,p,(t)) leaves every compact subset K
of Qast]w_ and ast T wy.

Proof. By the Picard-Lindel6f theorem, the DE & = wv(t,x) has locally unique
solutions for every initial data point (7,a) in Q and so the material covered in
Lecture 5 applies. Most of the theorem has proved in the last two lectures. It
remains to prove that (¢, ¢, (t)) leaves any given compact subset of Q as ¢ | w_ and
as t twy.

It may be useful to look at the figure below while reading the rest of the proof.

B-4EnTN B (2 1) :
TR AV | L
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Suppose K C Q is a compact subset. If (¢,a) € K, we can find positive numbers

a(t,a) and p(t,a) such that
[t —2a(t,a),t + 2a(t,a)] x B(a,2p(t,a)) C Q

and such that v(t, ) is uniformly Lipschitz in @ on [t — 2a(t,a),t + 2a(t,a)] x
B(a,2p(t,a)). Note the factor of 2 everywhere. Since sets of the form (t—a(t, a), t+
a(t,a)) x B(a,p(t,a)) form an open cover of K as (t,a) varies in K, there exist
(tiya;) € K, i = 1,...,m such that, with p; = p(t;,a;) and o; = a(t;,a;) for
i=1,...,m, we have the inclusion:

K C U (ti — o, t; + Ozi) X B(az,pl)
i=1

Let

m
K'= U [ti — 20, t; + 205] x B(as, 2p;).
i=1
2



https://www.cmi.ac.in/~pramath/DEQN21/Lectures/Lecture5.pdf

Then K’ is compact and K" C Q. Let M = sup; o)ex [v(t, @)|, @ = mini<i<m @i,
r= minlgigm Pis and

(1) b:min{a,%}.

Suppose (1,a) € K. Then, (1,a) € [t; — a;,t; + ;] x B(as, p;) for some i €
{1,...,m}. By the triangle inequality, it follows that for this ¢ we have

[T —a,7+a] x B(a,r) C [ti — 204, t; + 2] x B(as,2p;).

Thus v(t, ) is uniformly Lipschitz in & on [r — a,7 + a] x B(a,r) and further
[T —a,7+a] x B(a,r) C K’ . By the Picard-Lindelsf theorem, we have a unique
solution ¢, 4y to the IVP & = v(t,z), (r) = a, such that [t —b,7 + 1] is an
interval of existence, where b is as in (f). In particular [ty — b, g + b] is an interval
of existence for (x), which means [tg — b, %o + b] C (w—, wy), whence (w_, wy) has
length strictly greater than 2b.

Let us return to our IVP (x) and its unique solution ¢, on (w_, w4 ). Ifwy = oo,
then Tmax := sup{7 € (w_,0) | (1,90 (7)) € K} is a real number in (w_, o), and
(1,0 (1)) ¢ K for 7 > Tipax. Similarly, if w_ = —oo we can find 7y, € (—00,wy)
such that (7,4, (7)) ¢ K for 7 < Tyin. Now assume wy < oco. By the parts
of the theorem that we have already proved (see section on maximal intervals of
existence in Lecture 5 as well as the Picard-Lindel6f theorem in Lecture 4) it is
clear that if 7 € (w—, wy) and a = (1), then ¢, = ¢(; ) and the maximal
interval of existence of @, ,) is also (w—, wi). Now suppose (7,¢,(7)) € K for
some T € (w_, wt). From our earlier observations, [r — b, 7 + b] is an interval of
existence for ¢, o) where a = ¢, (7). This means w_ <7 —band 7 +b <w;. In
other words, if if wy —b < 7 < wy, then (7, ¢, (7)) ¢ K. Similarly, if w_ > —o0
then (7, ¢, (7)) ¢ K whenever w_ < 7 < w_ + b. This proves the theorem. O

1.1.2. The crucial point in the proof of the statement about compact subsets of 2
is this: Given a compact subset K of {2, we have a positive real number b = bg such
that for every (7,a) € K, the open interval (7 — b, 7+ b) is an interval of existence
for the IVP & = v(t,2), (7) = a. The number b can be chosen as in () above.
This has the following consequence:

Given a point (7, a) € Q, there exists an open neighbouhood W, q)

of (1, @) in Q and a positive number b = b q) such that for every

(0, y) € Wir,q) the interval (0 —b,04b) is an interval of existence

for the IVP & = v(t, x), (0) = y.
Indeed, one can pick an open rectangle (17 —2n, 7+ 2n) X B(a, 2r) which lies entirely
in Q. Then K = [t — 1,7 + 1] x B(a,r) is a compact subset of , and if we pick
b = by for this K (as in (f)), and Wi, o) = (7 — 0,7 + 1) x B(a,r), we are done.
This result will be used later when we work with manifolds.

Corollary 1.1.3. If U C R" is a bounded set and 2 = (¢,d) x U with (¢,d) an
open interval in R, then either wy = d or ¢, (t) — OU ast T w4, and either w_ = ¢
or oo (t) = U ast | w_.

Proof. Suppose wy # d. Then wy < d and —e 4+ w4 € (¢, d) for sufficiently small e.
Let f: R™ — [0,00) be the function given by the formula:

= inf ||z — z|.
f@) = inf Jlz— 2|
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Since OU is a closed subset of R"™, f is continuous. For € > 0, let
Fe={zecU]| f(x) > €}

and

K.=]-e4+wy, wy] xT..
K. is compact and for sufficiently small €, K, is a non-empty subset of 2. From the
theorem, (¢, ¢, (t)) exits K. It cannot exit anywhere in {wy} x ', for o, does not
make sense at t = wi. Thus there exists 7. € [—€+ w4, wy) such that f(p, (1)) <€
for all ¢ € [7.,w4). This proves that ¢ (t) — OU as t T wy. Similarly, if w_ # ¢
then ¢, (t) = OU ast | w_. O

Corollary 1.1.4. If Q = (¢,d) x R™, (¢,d) an open interval in R, then either
wy =d or ||, (t)]] = 00 as t T wy, and either w_ = c or || (t)|| = 00 ast | w_.

Proof. Suppose w4 # d. Then wi < d and for n sufficiently large, f% +wy € (¢, d).
This time consider

K, = [—% +w+,w+} x B(0,n).

Then K, is compact. Repeating the argument used towards the end of the proof
of the previous corollary, we can find 7, € [-2 + w,,w,) such that [¢,(t)]| > n
for all ¢ € [1,,,wy). This proves that ||, (t)]] — o0 as ¢ T w4. Similarly if w_ # ¢
then ||, (t)]] > 0o ast | w_. O
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