LECTURE 6

Date of Lecture: January 20, 2021

The symbol P is for flagging a cautionary comment or a tricky argument. It occurs in the margins and is Knuth's version of Bourbaki's "dangerous bend symbol".

An *n*-tuple (x_1, \ldots, x_n) of symbols $(x_i \text{ not necessarily real or complex numbers}) will also be written as a column vector when convenient. Thus$

$$(x_1,\ldots,x_n) = \begin{bmatrix} x_1\\ \vdots\\ x_n \end{bmatrix}.$$

A map f from a set S to a product set $T_1 \times \cdots \times T_n$ will often be written as an *n*-tuple $f = (f_1, \ldots, f_n)$, with f_i a map from S to T_i , and hence, by the above convention, as a column vector

$$oldsymbol{f} = egin{bmatrix} f_1 \ dots \ f_n \end{bmatrix}.$$

(See Remark 2.2.2 of Lecture 5 of ANA2.)

Ś

The default norm on Euclidean spaces of the form \mathbf{R}^n is the Euclidean norm $|| ||_2$ and we will simply denote it as || ||. The space of **R**-linear transformations from \mathbf{R}^n to \mathbf{R}^m will be denoted $\operatorname{Hom}_{\mathbf{R}}(\mathbf{R}^n, \mathbf{R}^m)$ and will be identified in the standard way with the space of $m \times n$ real matrices $M_{m,n}(\mathbf{R})$ and the operator norm¹ on both spaces will be denoted $|| ||_{\circ}$. If m = n, we write $M_n(\mathbf{R})$ for $M_{m,n}(\mathbf{R})$.

Note that $(x_1, \ldots, x_n) \neq [x_1 \ldots x_n]$. Each side is the transpose of the other.

1. Solutions in the locally Lipschitz case

The proofs here are based on the ones given in [G].

1.1. Existence and uniqueness for locally Lipschitz v. Please refer to Lecture 5 for the definition of an interval of existence as well as that of a maximal interval of existence.

Theorem 1.1.1. Suppose Ω is a domain in $\mathbf{R} \times \mathbf{R}^n$ and $\boldsymbol{v} \colon \Omega \to \mathbf{R}^n$ is a locally Lipschitz continuous in \boldsymbol{x} . Fix $(t_0, \boldsymbol{a_0}) \in \Omega$. Then the IVP

(*)
$$\begin{cases} \dot{\boldsymbol{x}} = \boldsymbol{v}(t, \boldsymbol{x}) \\ \boldsymbol{x}(t_0) = \boldsymbol{a_0} \end{cases}$$

has a maximal interval of existence, and is of the form (ω_{-}, ω_{+}) , with $\omega_{-} \in [-\infty, \infty)$ and $\omega_{+} \in (-\infty, \infty]$. There is a unique solution

$$\varphi_{o} = \varphi_{(t_0, a_0)} \colon (\omega_{-}, \omega_{+}) \to \mathbf{R}^r$$

¹See §§2.1 of Lecture 5 of ANA2.

of (*) on (ω_{-}, ω_{+}) and any solution of (*) on an interval I containing t_0 is the restriction of φ_0 to I. The variable point $(t, \varphi_0(t))$ leaves every compact subset K of Ω as $t \downarrow \omega_{-}$ and as $t \uparrow \omega_{+}$.

Proof. By the Picard-Lindelöf theorem, the DE $\dot{\boldsymbol{x}} = \boldsymbol{v}(t, \boldsymbol{x})$ has locally unique solutions for every initial data point (τ, \boldsymbol{a}) in Ω and so the material covered in Lecture 5 applies. Most of the theorem has proved in the last two lectures. It remains to prove that $(t, \varphi_{o}(t))$ leaves any given compact subset of Ω as $t \downarrow \omega_{-}$ and as $t \uparrow \omega_{+}$.

It may be useful to look at the figure below while reading the rest of the proof.

Suppose $K \subset \Omega$ is a compact subset. If $(t, \mathbf{a}) \in K$, we can find positive numbers $\alpha(t, \mathbf{a})$ and $\rho(t, \mathbf{a})$ such that

$$[t - 2\alpha(t, \boldsymbol{a}), t + 2\alpha(t, \boldsymbol{a})] \times \overline{B}(\boldsymbol{a}, 2\rho(t, \boldsymbol{a})) \subset \Omega$$

and such that $\boldsymbol{v}(t, \boldsymbol{x})$ is uniformly Lipschitz in \boldsymbol{x} on $[t - 2\alpha(t, \boldsymbol{a}), t + 2\alpha(t, \boldsymbol{a})] \times \overline{B}(\boldsymbol{a}, 2\rho(t, \boldsymbol{a}))$. Note the factor of 2 everywhere. Since sets of the form $(t - \alpha(t, \boldsymbol{a}), t + \alpha(t, \boldsymbol{a})) \times B(\boldsymbol{a}, \rho(t, \boldsymbol{a}))$ form an open cover of K as (t, \boldsymbol{a}) varies in K, there exist $(t_i, \boldsymbol{a_i}) \in K, \ i = 1, \ldots, m$ such that, with $\rho_i = \rho(t_i, \boldsymbol{a_i})$ and $\alpha_i = \alpha(t_i, \boldsymbol{a_i})$ for $i = 1, \ldots, m$, we have the inclusion:

$$K \subset \bigcup_{i=1}^{m} (t_i - \alpha_i, t_i + \alpha_i) \times B(\boldsymbol{a_i}, \rho_i).$$

Let

$$K' = \bigcup_{i=1}^{m} [t_i - 2\alpha_i, t_i + 2\alpha_i] \times \overline{B}(\boldsymbol{a_i}, 2\rho_i)$$

Then K' is compact and $K' \subset \Omega$. Let $M = \sup_{(t, a) \in K'} |v(t, a)|, \alpha = \min_{1 \leq i \leq m} \alpha_i, r = \min_{1 \leq i \leq m} \rho_i$, and

(†)
$$b = \min\left\{\alpha, \frac{r}{M}\right\}.$$

Suppose $(\tau, \mathbf{a}) \in K$. Then, $(\tau, \mathbf{a}) \in [t_i - \alpha_i, t_i + \alpha_i] \times \overline{B}(\mathbf{a}_i, \rho_i)$ for some $i \in \{1, \ldots, m\}$. By the triangle inequality, it follows that for this *i* we have

 $[\tau - \alpha, \tau + \alpha] \times \overline{B}(\boldsymbol{a}, r) \subset [t_i - 2\alpha_i, t_i + 2\alpha_i] \times \overline{B}(\boldsymbol{a}_i, 2\rho_i).$

Thus $\boldsymbol{v}(t, \boldsymbol{x})$ is uniformly Lipschitz in \boldsymbol{x} on $[\tau - \alpha, \tau + \alpha] \times \overline{B}(\boldsymbol{a}, r)$ and further $[\tau - \alpha, \tau + \alpha] \times \overline{B}(\boldsymbol{a}, r) \subset K'$. By the Picard-Lindelöf theorem, we have a unique solution $\boldsymbol{\varphi}_{(\tau, \boldsymbol{a})}$ to the IVP $\dot{\boldsymbol{x}} = \boldsymbol{v}(t, \boldsymbol{x}), \ \boldsymbol{x}(\tau) = \boldsymbol{a}$, such that $[\tau - b, \tau + b]$ is an interval of existence, where b is as in (†). In particular $[t_0 - b, t_0 + b]$ is an interval of existence for (*), which means $[t_0 - b, t_0 + b] \subset (\omega_-, \omega_+)$, whence (ω_-, ω_+) has length strictly greater than 2b.

Let us return to our IVP (*) and its unique solution φ_{o} on (ω_{-}, ω_{+}) . If $\omega_{+} = \infty$, then $\tau_{\max} := \sup\{\tau \in (\omega_{-}, \infty) \mid (\tau, \varphi_{o}(\tau)) \in K\}$ is a real number in (ω_{-}, ∞) , and $(\tau, \varphi_{o}(\tau)) \notin K$ for $\tau > \tau_{\max}$. Similarly, if $\omega_{-} = -\infty$ we can find $\tau_{\min} \in (-\infty, \omega_{+})$ such that $(\tau, \varphi_{o}(\tau)) \notin K$ for $\tau < \tau_{\min}$. Now assume $\omega_{+} < \infty$. By the parts of the theorem that we have already proved (see section on maximal intervals of existence in Lecture 5 as well as the Picard-Lindelöf theorem in Lecture 4) it is clear that if $\tau \in (\omega_{-}, \omega_{+})$ and $\mathbf{a} = \varphi_{o}(\tau)$, then $\varphi_{o} = \varphi_{(\tau, \mathbf{a})}$ and the maximal interval of existence of $\varphi_{(\tau, \mathbf{a})}$ is also (ω_{-}, ω_{+}) . Now suppose $(\tau, \varphi_{o}(\tau)) \in K$ for some $\tau \in (\omega_{-}, \omega_{+})$. From our earlier observations, $[\tau - b, \tau + b]$ is an interval of existence for $\varphi_{(\tau, \mathbf{a})}$ where $\mathbf{a} = \varphi_{o}(\tau)$. This means $\omega_{-} < \tau - b$ and $\tau + b < \omega_{+}$. In other words, if if $\omega_{+} - b \leq \tau < \omega_{+}$, then $(\tau, \varphi_{o}(\tau)) \notin K$. Similarly, if $\omega_{-} > -\infty$ then $(\tau, \varphi_{o}(\tau)) \notin K$ whenever $\omega_{-} < \tau \leq \omega_{-} + b$. This proves the theorem.

1.1.2. The crucial point in the proof of the statement about compact subsets of Ω is this: Given a compact subset K of Ω , we have a positive real number $b = b_K$ such that for every $(\tau, \mathbf{a}) \in K$, the open interval $(\tau - b, \tau + b)$ is an interval of existence for the IVP $\dot{\mathbf{x}} = \mathbf{v}(t, \mathbf{x}), \mathbf{x}(\tau) = \mathbf{a}$. The number b can be chosen as in (†) above. This has the following consequence:

Given a point $(\tau, \mathbf{a}) \in \Omega$, there exists an open neighbouhood $W_{(\tau, \mathbf{a})}$ of (τ, \mathbf{a}) in Ω and a positive number $b = b_{(\tau, \mathbf{a})}$ such that for every $(\theta, \mathbf{y}) \in W_{(\tau, \mathbf{a})}$ the interval $(\theta - b, \theta + b)$ is an interval of existence for the IVP $\dot{\mathbf{x}} = \mathbf{v}(t, \mathbf{x}), \mathbf{x}(\theta) = \mathbf{y}$.

Indeed, one can pick an open rectangle $(\tau - 2\eta, \tau + 2\eta) \times B(\boldsymbol{a}, 2r)$ which lies entirely in Ω . Then $K = [\tau - \eta, \tau + \eta] \times \overline{B}(\boldsymbol{a}, r)$ is a compact subset of Ω , and if we pick $b = b_K$ for this K (as in (\dagger)), and $W_{(\tau, \boldsymbol{a})} = (\tau - \eta, \tau + \eta) \times B(\boldsymbol{a}, r)$, we are done. This result will be used later when we work with manifolds.

Corollary 1.1.3. If $U \subset \mathbb{R}^n$ is a bounded set and $\Omega = (c, d) \times U$ with (c, d) an open interval in \mathbb{R} , then either $\omega_+ = d$ or $\varphi_o(t) \to \partial U$ as $t \uparrow \omega_+$, and either $\omega_- = c$ or $\varphi_o(t) \to \partial U$ as $t \downarrow \omega_-$.

Proof. Suppose $\omega_+ \neq d$. Then $\omega_+ < d$ and $-\epsilon + \omega_+ \in (c, d)$ for sufficiently small ϵ . Let $f: \mathbf{R}^n \to [0, \infty)$ be the function given by the formula:

$$f(x) = \inf_{\substack{\boldsymbol{z} \in \partial U \\ 3}} \|\boldsymbol{x} - \boldsymbol{z}\|.$$

Since ∂U is a closed subset of \mathbf{R}^n , f is continuous. For $\epsilon > 0$, let

$$\Gamma_{\epsilon} = \{ \boldsymbol{x} \in U \mid f(\boldsymbol{x}) \ge \epsilon \}$$

and

$$K_{\epsilon} = [-\epsilon + \omega_+, \, \omega_+] \times \Gamma_{\epsilon}.$$

 K_{ϵ} is compact and for sufficiently small ϵ , K_{ϵ} is a non-empty subset of Ω . From the theorem, $(t, \varphi_{o}(t))$ exits K_{ϵ} . It cannot exit anywhere in $\{\omega_{+}\} \times \Gamma_{\epsilon}$, for φ_{o} does not make sense at $t = \omega_{+}$. Thus there exists $\tau_{\epsilon} \in [-\epsilon + \omega_{+}, \omega_{+})$ such that $f(\varphi_{o}(t)) < \epsilon$ for all $t \in [\tau_{\epsilon}, \omega_{+})$. This proves that $\varphi_{o}(t) \to \partial U$ as $t \uparrow \omega_{+}$. Similarly, if $\omega_{-} \neq c$ then $\varphi_{o}(t) \to \partial U$ as $t \downarrow \omega_{-}$.

Corollary 1.1.4. If $\Omega = (c, d) \times \mathbf{R}^n$, (c, d) an open interval in \mathbf{R} , then either $\omega_+ = d$ or $\|\varphi_0(t)\| \to \infty$ as $t \uparrow \omega_+$, and either $\omega_- = c$ or $\|\varphi_0(t)\| \to \infty$ as $t \downarrow \omega_-$.

Proof. Suppose $\omega_+ \neq d$. Then $\omega_+ < d$ and for *n* sufficiently large, $-\frac{1}{n} + \omega_+ \in (c, d)$. This time consider

$$K_n = \left[-\frac{1}{n} + \omega_+, \omega_+\right] \times \overline{B}(\mathbf{0}, n).$$

Then K_n is compact. Repeating the argument used towards the end of the proof of the previous corollary, we can find $\tau_n \in [-\frac{1}{n} + \omega_+, \omega_+)$ such that $\|\varphi_o(t)\| \ge n$ for all $t \in [\tau_n, \omega_+)$. This proves that $\|\varphi_o(t)\| \to \infty$ as $t \uparrow \omega_+$. Similarly if $\omega_- \neq c$ then $\|\varphi_o(t)\| \to \infty$ as $t \downarrow \omega_-$.

References

- [A1] V. I. Arnold, Ordinary Differential Equations, translated by Richard A. Silverman, MIT Press (also Prentice-Hall, India), Cambridge, MA, U.S.A., 1973.
- [A2] V. I. Arnold, Ordinary Differential Equations, Third Edition, translated by Roger Cooke, Universitext, Springer-Verlag, Berlin, 2006.
- [G] C.P. Grant, Theory of Ordinary Differential Equations. https://www.math.utah.edu/ ~treiberg/GrantTodes2008.pdf, Brigham Young University.