Let Ω be a domain $\mathbb{R} \times \mathbb{R}^{n}$ 。 lie. Ω is a connected open subset of $\mathbb{R} \times \mathbb{R}^{n}$. Let

$$
\vec{v}: \Omega \longrightarrow \mathbb{R}^{n}
$$

is said ts be locally Lipschitz with repput to phase if it is continuous and if for each $\left(t_{0}, \vec{a}\right) \in \Omega, \exists$ a posture number $L=L\left(t_{0}, \vec{a}\right)$ and a product sit $I \times l l$ containg $\left(t_{0}, \vec{a}\right)$ as an interior point sulu that for cauls $t \in I$, the resturction of $\vec{v}(t,-)$ to $l e$ is Lipschity continow with Lipschitz crostant $L=L\left(t_{0}, \vec{a}\right)$. We say it is uniformly lipchitz Cor just Lipsclitz) if $L\left(t_{0}, \vec{a}\right)$ does ot depend upon (t_{0}, \vec{a}).

Maximal intervals of existence
Let Ω be a domain in $\mathbb{R} \times \mathbb{R}^{n}$ and $\vec{v}: \Omega \longrightarrow \mathbb{R}^{n}$ a continuous map such that for each $\left(k_{0}, \vec{a}\right) \in \Omega$ the IVP (*) $t_{0}, \vec{a} \quad \dot{\vec{x}}=\vec{v}(t, \vec{x}) \quad \vec{x}\left(t_{0}\right)=\vec{a}$
has a solution on some terrie interval I Coper, cloud, half open) containing t_{0} in ito interior, and the solution is unique on this interval.

Let us fox $(t, \vec{a}) \in \Omega$. If I is an interval on which a solution to $(x)_{t_{0}, \vec{A}}$ exists, with to in the inluier of I, we call I an interval of eosistince
for $\quad(x)_{t_{0,}, \vec{a}}$.
suppose I_{1}, I_{2} are open intervals of existence.
Let $\overrightarrow{Q_{1}}$ and ${\overrightarrow{Q_{2}}}_{2}$ be solution of $\overrightarrow{(x)} t_{0}, \vec{a}$ in I_{1}, I_{2} resputively. From the luppothesis, the set

$$
S=\left\{t \in I_{1} \cap I_{2} \mid \overrightarrow{Q_{1}}(t)=\overrightarrow{Q_{2}}(t)\right\}
$$

is open. Indeed if $\tau \in S$, and $\vec{a}^{*}=\vec{Q}_{1}(\tau)=\vec{Q}_{2}(\tau)$, trews \vec{d}_{1} and $\overrightarrow{Q_{\nu}}$ are solutions of $\left(\underset{)}{(\xi)} \tau_{,}{ }^{*}\right.$, so in a neighbornhood of $\tau, \vec{\phi}_{1}$ and $\vec{\phi}_{2}$ agree. An the often hound S is dearly closed \tilde{d}_{1} and non-emply, since $t_{0} \in S$. Since $I_{1} \cap I_{2}$ is commented, this weans $S=I_{1} \cap I_{2}$.
Conclusion: $\quad \vec{d}_{1}$ and ${\overrightarrow{Q_{2}}}$ ape on $I_{1} \cap I_{2}$. Tom the above, the reunion of all open intervals of existence for $\left({ }^{(}\right)_{t_{0}, \vec{a}}$ is also an internal of existence. Let

$$
J_{\text {max }}=\left(w_{-}, w_{+}\right):=U I
$$

where the union is taken over all open eirtervals of easistence. Then Joan is an interval of existence.

Now suppose I is an interval of existence of $(*)_{t_{0}, \vec{a}}$.
If I is open, clearly $I \subseteq$ Jmax. A little thought shows that I is contained in Imax even if I is not open. This is seen as followed. Suppose $I=(a, b]$ Cotter case cam be dealt with in a sind on way. Now $I^{0}=(a, b) \subset\left(\omega_{-}, \omega_{+}\right)$. If $I \&\left(\omega_{-}, \omega_{+}\right)$then
dearly $b=\omega_{4}\left(\sin c e(a, b) \subset\left(\omega_{-}, \omega_{+}\right)\right)$. Let $\vec{\varphi}: I \longrightarrow \Omega$ be a sole A ar IUP. Then $(b, \vec{\phi}(b)) \in \Omega$, and slice \vec{v} is locally Lipselinty in the swound variable loren is a comport rectangle $R^{\prime}=[b-2 \alpha, b+2 \alpha] \times \bar{B}(\vec{Q}(b), 2 r) \subset \Omega$ sunk that \vec{V} is uniformly lipsclitg in the second variable on R^{\prime}. Let

$$
R=[b-\alpha, b+\alpha] \times \bar{B}(\vec{Q}(b), r) \subset R^{\prime} .
$$

Let M be the supremum of $\vec{v}(t, \vec{\rho})$ on R ! If $(\tau, \vec{\omega}) \in R$, then dearly $R(\tau, \vec{\omega}):=[\tau-\alpha, \tau+\alpha] \times \bar{B}(\vec{\omega}, r) \subset R^{\prime}$ (by the twa angle in equality). Moreover, \vec{v} is emifunly lipsclivity in the suond variate on $R(\tau, \vec{w})$.
Set $\beta=\min \left(\alpha, \frac{M}{r}\right)$. By licand-Lindelof $m R(R, \vec{w})$ we see that for each $(\tau, \vec{w}) \in R$, the IVP $\dot{\vec{x}}=\vec{v}(t, \vec{x}), \vec{x}(\tau)=\vec{w}$ has a unique solution on $[\tau-\beta, \tau+\beta]$. Since $(t, \vec{\phi}(t)) \longrightarrow(b, \vec{Q}(b))$ as $t \uparrow b$, we cam find $\tau \in\left(b-\frac{p}{2}, b\right)$ such that $(\tau, Q(\tau)) \in R$. Let $\vec{w}=Q(\tau)$.
Now (i) the olin $\vec{\psi}$ f the lu $\dot{\vec{x}}=\vec{v}(t, \vec{x}), \vec{x}(\tau)=\vec{w}$ has to agree with $\vec{\varphi}$ on $\left(b-\frac{1}{2}, b\right)$ by enniguarss 1 solis, and (ii) $\vec{\psi}$ exists $m[\tau-\beta, \tau+\beta]$. Since $b-\frac{\beta}{2}<\tau<b$, clearly $\tau+\beta>b$. Thus $\vec{\phi}$ easts $m \quad\left(a, \quad{ }^{\tau+\beta}, \beta\right)$. Rut $b=\omega_{+}$(sue argument above). since $\tau+\beta>b=\omega_{+}$. This gives a contradictionif. Hence $I \subset J_{\text {max. }}$ We thus have

Thoonam: There is a makioul solution $\vec{Q}_{\text {max }}: J_{\text {max }}=\left(\omega_{-}, \omega_{4}\right) \longrightarrow \Omega$ A the $\operatorname{lUP}\left({ }^{(x)}\left(t_{0}, \vec{a}\right)\right.$ in the sense that if $\vec{\phi}: I \longrightarrow \Omega$ is any sole $A(\theta)\left(t_{0}, \vec{a}\right)$, with $t_{0} \in I$, then $I \subset I_{\text {max }}$ and $\vec{\phi}=\left.\vec{Q}_{\text {mass }}\right|_{I}$.

Punark For us, inteurals have ron-empty intuiors.

Return to the onc-variable antonourus care:
Counter agni the IVP

$$
\dot{x}=v(x), \quad x\left(t_{0}\right)=x_{0}
$$

blue $v: \Omega \longrightarrow \mathbb{R}$ is l^{\prime} map on an inter sol Ω, and $v\left(x_{0}\right) \neq 0$. Let $\left(x_{m}, x_{n}\right)$ be the commutual component of $\Omega^{\text {reg }}$ antaining t_{0}. Lit $\left(-\omega_{-}, \omega_{+}\right), J_{\text {max }}, \theta, Q_{\text {max }}$ te be as before. Recall, if $v\left(x_{0}\right)>0$

$$
\lim _{t \rightarrow w_{t}} \varphi_{\text {wax }}(t)=x_{M}, \quad \lim _{t \rightarrow \omega_{-}} \varphi_{\text {max }}(t)=x_{m}
$$

Tultur (again assuming $v\left(x_{0}\right)>0$),

$$
\begin{aligned}
& x_{M} \in \Omega \quad \Rightarrow \quad w_{4}=\infty \\
& x_{m} \in \Omega \quad \Rightarrow \quad w_{-}=-\infty
\end{aligned}
$$

suppose k is a compact set in $I_{\max } \times \Omega$.
Without loss of generality em assume $k=J \times S$, with I ant s closed intervals, I containg to.

If $x_{M} \in S$, then $\varphi(t)$ can never be x_{M}, and $\omega_{p}=\infty$. In tins case $(t, Q(t))$ ealito k from the night at some point. Let $S=\left[x_{1}, x_{2}\right]$. If $x_{M} \notin k$, then $x_{2}<x_{M}$. Rho that $\lim _{t \rightarrow \omega_{+}} Q(t)=x_{M}$. Hence eittin ($t, \varphi(t)$) exits k from the top or from the right side.

The argument (using time veverals if recess any) shoos that $\left(b, Q_{\max }(t)\right.$ nut exit K.

Theovean: Suppose Ω is a domain in $\mathbb{R}_{x} \mathbb{R}^{n}$ and $\vec{v}: \Omega \longrightarrow \mathbb{R}^{n}$ a locally Lipschit Ω in \vec{x} continuous frumbon.V Then the IVP

$$
{ }_{(*)}^{t_{0}, \overrightarrow{a_{0}}} \quad\left\{\begin{array}{l}
\dot{\vec{x}}=\vec{v}(t, \vec{x}) \\
\vec{x}\left(t_{0}\right)=\overrightarrow{a_{0}}
\end{array}\right.
$$

has a maximal interval of existence, and is of the form $\left(w_{-}, \omega_{+}\right), w_{-} \in[-\infty, \infty)$ and $w_{+} \in(-\infty, \infty]$. There is a unique solution

$$
\overrightarrow{\phi_{0}}=\vec{\phi}_{\left(t_{0}, \vec{a}_{0}\right)}:\left(\omega_{-}, \omega_{+}\right) \longrightarrow \mathbb{R}^{n}
$$

of $(*) t_{0}, \vec{t}_{0}$ on $\left(\omega_{-}, \omega_{t}\right)$ and any solution of $(x) t_{0}, \vec{a}_{0}$ on an intienal I containing to is the aslinction of \vec{Q}_{0} to I. The variable point $\left(t, \varphi_{0}(t)\right)$ leaves every comport subset k of Ω as $t \downarrow \omega_{n}$ and as $t \uparrow \omega_{+}$.
Proof:
We only need to prove the lest statement. Evenglling elbe has been proved.

Let $k C \Omega$ be a compact subset. It $(t, \vec{a}) \in k$, we can find the numbers $\alpha(t, \vec{a})$ and $\rho(t, \vec{a})$ sunk that

$$
[t-2 \alpha(t, \vec{a}), t+2 \alpha(t, \vec{a})] \times \bar{B}(\vec{a}, 2 \rho(t, \vec{a})) \subset \Omega \text {. }
$$

ant such that $v(t, \vec{x})$ is unipanly Lipslitz on $\left[t-2 \alpha(t, \vec{k}), t+2 \alpha\left(t, \overrightarrow{a^{3}}\right)\right] \times \vec{B}(\vec{a}, 2 \rho(t, \vec{x}))$. Note the factor of 2 evenyohere. Sine the sets of the form $(t-2 \alpha(t, \vec{a}), t+2 \alpha(t, \vec{a})) \times B(\vec{a}, 2 \rho(t, \vec{a}))$ form an
open cover of k as (t, \vec{a}) varies in k, there exist $\left(t_{i}, \vec{a}_{i}\right) \in K, i=1, \ldots, m$ such that

$$
k \subset \bigcup_{i=1}^{m}\left(t-\alpha_{i}, t+\alpha_{0}\right) \times B\left(a_{i}, \rho_{i}\right)
$$

where $\alpha_{i}=\alpha\left(t i, \vec{a}_{i}\right)$
$\leftarrow e_{i}=\rho\left(t_{i}, \vec{a}_{i}\right)$
Let $\quad k^{\prime}=\bigcup_{j=1}^{m}\left[t-2 \alpha_{i}, t+2 \alpha_{i}\right] \times \bar{B}\left(a_{i}, 2 e_{i}\right)$

Then k^{\prime} is compant and $k^{\prime} \subset \Omega$. Let

$$
\begin{aligned}
& M=\sup (t, \vec{a}) \in k^{\prime}\|\vec{v}(t, \vec{a})\|, \\
& \alpha=\operatorname{Min}_{1 \leq i \leq m} \alpha_{i} \\
& r=\min _{l \leq i \leq m} e_{i} .
\end{aligned}
$$

Suppare $(\tau, \vec{a}) \in K$. Then $(\tau, \vec{a}) \in\left[\sigma_{i}-\alpha_{i}, t_{i}+\alpha_{i}\right] \times \vec{B}\left(\vec{a}, \rho_{i}\right)$ fer some $i \in\{1, \ldots, m\}$. By the thiangle eirequality

$$
[\tau-\alpha, \tau+\alpha] \times B(\vec{a}, r) C\left[6_{i}-2 \alpha i, t_{i}+2 \alpha_{i}\right] \times \bar{B}\left(a_{i}, 2 e_{i}\right)
$$

Then v is unipernly Nopcliotz is \vec{x} on
$[\tau-\alpha, \tau+\alpha] \times \bar{B}(\vec{a}, \gamma)$, and furthen $[\tau-\alpha, \tau+\alpha] \times \bar{B}(a, v)$ $C k^{\prime}$. By Picand-Lindelöt, we havie a solution $\varphi_{(\tau, k)}$ to ltre lUP $(k)(\tau, \vec{k}), \quad \dot{\vec{x}}=\vec{v}(t, \vec{x})$, $x(\tau)=\vec{a}$, on $[\tau-b, \tau+b]$ where

$$
b=\min \left\{\alpha, \frac{r}{M}\right\} \quad \longleftarrow \text { eindependent } \hat{(}(\tau, \vec{a})
$$

In pentucular $\left[t_{0}-b, t_{0}+b\right]$ is an intural A existeres for ${\overrightarrow{Q_{0}}}$, Lit $\left(\omega_{-}, \omega_{+}\right)$be the maxainal intuvel of existince of $(*)\left(t_{0}, \vec{a}_{0}\right)$, and $\overrightarrow{\dot{\theta}_{0}}$ the soln an this inteval. Lit $\tau \in\left(\omega-, \omega_{4}\right)$, and $\vec{a}=\overrightarrow{\phi_{0}}(\tau)$.
Then $\vec{\varphi}_{(\tau, \vec{a})}=\vec{\varphi}_{0}$, and the maximal intionul A excoltince of $(k)(\tau, \vec{a})$ is also $\left(\omega-, \omega_{+}\right)$

\qquad
\qquad

