Jour B, 2021
Last time we started proving:
hypertime: Let
$$Q: (a,b) \longrightarrow \Omega$$
 be a solution $A(b)$ with
 $7c \in \Omega^{ref}$. Let θ , $Q_{max}, Z_m, Z_n, W_r, W_r, W_r$ etc be an
above. Then
(a) Q tooks values in Ω^{ref}
(b) $(a,b) \in (rw_r, w_r)$
(c) $Q = Q_{max}|_{ca,b}$
Proof:
for the last lettice are showed that (a) implies (b)
and (c). Is we only have to prove (a).
Let (u, p) be the convected component δ_{1} ,
 $Q^{-1}(\Omega^{reg})$ ordining to.
Now $Q|_{Q,B}$ tokes values in Ω^{ref} . Jonn a
hyper proved in the last lettice, $-tr$ follows that
 $(u, p) \subseteq (w_r, w_r)$
and $Q(b) = Q_{max}(b)$ $\forall b \in G, p).$
the is ensigh for us to show that are a and $b = \beta$.
Here is the situation:
 (w_r, y_r) (w_r, y_r)

Whole enough to assume v (20) > 0. We will prove b= B. The same proof mutates mutandes will show that a= 2. Suppose BC b and BC Ny. Now by taking limits, clearly of (B) = Qmax (B) E Dref, This contradiots the fear that (a, p) is the layest open interval containing to in p-' (Dreg). Thenfore either B=D or B= Wy. Next suppose p= we and p < b. Since & is defined on (a, b), & (*) makes sense. Clearly V(Q(B)) = O. More over Q is increasing in (a, B) be came & is norshere vanishing on (2, 3) and v (Q (to)=v(2) > 0. A little throught alread that $\varphi(p) = \chi_{M}$ This means $z_{\mu} \in \Omega$, which then implies that wy = 00, and hence p= wy = as and p= b. This ie also a contradiction. So if B=W, then B=b. The same argument drongs that 2=a. g.c.d. → P.T.O.

Theorem: Consider the 11/P $\overset{(*)}{\leftarrow} \dot{\mathbf{x}} = \mathbf{v}(\mathbf{x})$ x (to) = no where $v: \Omega \longrightarrow \mathbb{R}$ is a \mathcal{C}^1 function and Ω is an open interval in R. Then there a maximul whiten (Jmans, Qmax) of (*) such that if (J, c) is a solu of Cel then JC Juan and Q = Quar J. Rog: Suppose v (no) = 0. Then we have alrendy seen this is true. Suppose r(no) = 0. We danis that the maril solution of (*) is the constand function $Q(k) = n_0$ LER (In this care Junan = R) It is clean that the contand function defined abone is a solution of (#). Commessly suppose (5,4) is a solution of (t). Inprove v (V(2)) = 0 for some C & J. Then V(t) e Dreg in a norphornhood of Z. Let nt = Q(2). Then V is a solu of the WP $\dot{n} = \sigma(x)$ $\chi(z) = \chi^{k}$ From the provins Prop", I take rakes only in 2" This is a contradiction. q.e.d.

beformition: Let
$$A \subseteq \mathbb{R}^{n}$$
; A function $\overline{f} : A \to \mathbb{R}^{n}$ is
avid to be Lipschitz $: \overline{f} = 1 \ge 0$ such that
 $\|\overline{f}(\overline{z}) - \overline{f}(\overline{g})\| \le L \|\overline{z} - \overline{g}\| + \overline{z}, \overline{g} \in A$.
The conduct L is called a Lipschitz constant for \overline{f} .
Improve $T = La, b)$, as $(-so, o)$, be (a, o) . We say
 $\overline{f} : T \to \mathbb{R}^{n}$ is $\overline{G}' : \overline{f} = \frac{d^{+}}{dt} \Big|_{t \ge a}$ exists, and the
investing function $\overline{f} : T \longrightarrow \mathbb{R}^{n}$ is continents, Here
 $\overline{f}(a)$ is the one-aided derivative are just mentioned.
Initially use can make sense $d = \overline{G}'$ functions
on (a, b) , La, b .

Notations:
Let $\overline{a} \in \mathbb{R}^{n}$, $n \ge 0$.
 $\overline{B}(\overline{a}, n) = \{\overline{z} \in \mathbb{R}^{n} \mid \|\overline{z} - \overline{z}\| \le n\}$
Let \overline{T} be a closed and bounded interval in \mathbb{R} .
 $C(T_{3}n) = The sd of continues in \mathbb{R}^{n} .
Let \overline{a} control and bounded interval in \mathbb{R}^{n} .
Let \overline{a} control and bounded interval in \mathbb{R}^{n} .
Let \overline{a} closed and bounded interval in \mathbb{R}^{n} .
Let \overline{a} closed one conses that $(C(L_{3}n), \|1\cdot\|_{D})$ is
a Bouncil space, it. it is a complete normed vector
deprece.$

To prove the existence and !-vers of solutions to DE's to IVP's on I, it is more convenient to work with a differend userna demoted II II we. Let to be the mid point point of I (recall I is now clouds bdd), and III=26. Then I = [to-b, to+b]. Let L be a ponitive number. Define $\|\cdot\|_{\mathcal{W}} = \|\cdot\|_{\mathcal{W}_{L}} : C(\mathbf{I},\mathbf{n}) \longrightarrow \mathbf{I}_{\mathcal{O},\mathbf{O}}$ by $\|\vec{f}\|_{10} = \sup_{t \in I} \begin{cases} e^{-2L|t-t_0|} |\vec{f}(t)| \\ f(t)| \end{cases}$ It is straightforward to chuk that 1. 1100 is a norm. Lemma: 11. 1120 and 11. 11 are equivalent norms. Pros : $e^{-Lb} \cdot \|f\|_{\infty} \leq \|f\|_{\omega} \leq \|f\|_{\infty} \quad \forall f \in C(I,n).$ a.ed. ≥ P. T. D.

Theorem (Ricard-Lindelöf): Let at E RM, to E IR and let

$$\overline{\nabla}: [t_0 - a, t_0 + a] \times \overline{\mathbb{B}}(\overline{a}, a) \longrightarrow \mathbb{R}^n$$
be a continuous map with appen bound IN for $\|\nabla(t, \overline{a}t)\|$.
Suppose further that there is a pointime constant L
undented for each $t \in [t_0 - a, t_0 + a]$, the furthere

$$\overline{\nabla}(t_0, -) : \overline{\mathbb{B}}(\overline{a}, r_1) \longrightarrow \mathbb{R}^n \text{ is Lipselity with Lipselity}$$
constant L. Then the \mathbb{NP}

$$\overline{\overline{\Sigma}} = \overline{\nabla}(t_0, \overline{z}^n), \quad \overline{\mathbb{E}}(t_0) = \overline{a}\overline{z}$$
has a manique solution defined on $[t_0 - b, t_0 + b]$
where $b = \min\{d, \frac{n}{m}\}$.
Let $I = [t_0 - b, t_0 + b]$ where $b = \min\{a, \frac{r_0}{M}\}$.
Let $\|\cdot\|_{a_0} = \lim_{t \to T} b_{a_0} \int_{\mathbb{C}} e^{-2L|b-b_0|} |\overline{f}(t_0)|_{f_0}$
Let $X = \{\overline{f} \in C(T_0, n) \mid \overline{f}(T) \subseteq \overline{\mathbb{B}}(\overline{a}^n, r_0)\}$
Let $X = \{\overline{f} \in C(T_0, n) \mid \|\overline{f}(t) - \overline{t}\| \le r_0, t \in T\}$
Chearly, χ is closed in $C(T_0, n)$. Therefore (X, W, W) is also complete.

NT.Q ~>.

For
$$\vec{f} \in X$$
 and $t \in T$, define

$$(t\vec{f})(t) := \vec{a}^{2} + \int_{t_{0}}^{t_{0}} \vec{r}(s, \vec{f}(s)) ds.$$
The map $t \mapsto (T\vec{f})(t)$ is diffible on T (fund's thus q cale.) and
hence continues. Now

$$\|T\vec{f} - \vec{a}^{2}\| = \|\int_{t_{0}}^{t_{0}} \vec{r}(s, \vec{f}(s)) ds\| = \int\int_{t_{0}}^{t_{0}} \|\vec{v}(s, \vec{f}(s))\| ds\|$$

$$\leq M \int_{t_{0}}^{t_{0}} ds \|$$

$$\leq M |t - t_{0}|$$

$$\leq M |t - t_{0}|$$

$$\leq M |t - t_{0}|$$

$$= M |t - t_{0}|$$
Thus $T\vec{f} \in X$. Hence we have a map
 $T: X \longrightarrow X$.
Augrose $\vec{f}, \vec{g} \in X$. Then:

$$e^{-2t |t - t_{0}|} |(T\vec{f})(t) - (T\vec{g})(t)|$$

$$= e^{-2t |t - t_{0}|} |\int_{t_{0}}^{t_{0}} [\vec{v}(s, \vec{f}(s)) - \vec{v}(s, \vec{g}(s))] ds|$$

$$\leq e^{-2t |t - t_{0}|} |\int_{t_{0}}^{t_{0}} \|\vec{v}(s, \vec{f}(s)) - \vec{v}(s, \vec{g}(s))| ds|$$

$$\begin{aligned} \vec{\epsilon} \mid \vec{\epsilon}^{22} \mid \vec{t}^{-1} \vec{\epsilon}^{-1} \mid \vec{\epsilon}^{-1} \mid \vec{\epsilon}^{-1} \vec{\epsilon}^{-1} \mid \vec{\epsilon$$