Last tune ire started proving:

Proportion: Let $\varphi:(a, b) \longrightarrow \Omega$ be a solution of (t) with $x_{0} \in \Omega^{\text {reg }}$. Let $\theta, \varphi_{\text {max }}, x_{m}, x_{n}, w_{n}, w_{+}$etc be as above. Then
(a) of takes values in $e^{v e} y$
(b) $(a, b) \subseteq\left(-w_{-}, w_{+}\right)$
(c) $Q=\left.\varphi_{\max }\right|_{(a, b)}$

Proof:
In the last lecture we showed that (a) implies (b) and (c). So we only have to prove (a).

Lit (α, β) be the converted component of, $Q^{-1}\left(\Omega^{r e g}\right)$ containing t_{0}.

Now $\left.\varphi\right|_{(\alpha, \beta)}$ takes values in $\Omega^{r g}$. From a Cups proved in the last lecture, it follows that

$$
(\alpha, \beta) \subseteq\left(-\omega_{-}, \omega_{+}\right)
$$

ant $\phi(\delta)=\varphi_{\text {max }}(\delta) \quad \forall \delta \in(\alpha, \beta)$.
It is enough for us to show that $a=\alpha$ and $b=\beta$.
Here is the situation:
Would like to
say this \bar{n} an equality.

WLOF enough to assume $v\left(x_{0}\right)>0$.
We will pone $b=\beta$. The same proof untatis mutandis will show that $a=\alpha$.
suppre $\beta<b$ and $\beta<\omega_{+}$. Now, by taking limits, cleconly $\varphi(\beta)=\varphi_{\max }(\beta) \in \Omega^{\text {reg. This contradicts the }}$ feat that (α, β) is the largest open interval containing to in $\beta^{-1}\left(\Omega^{\text {reg }}\right)$. Thenfive either $\beta=b$ or $\beta=\omega_{t}$.

Next supple $\beta=\omega_{+}$and $\beta<b$. Since ϕ is defined on $(a, b), \phi(\&)$ makes sense. Clearly $v(\varphi(\beta))=0$. Moreover φ is sinemaring in (α, β) becance r is nowhere vanishing on (α, β) and $v\left(Q\left(t_{0}\right)=v(x)>0\right.$. A little thought shows that

$$
\phi(\beta)=x_{M} .
$$

This weans $x_{M} \in \Omega$, which then eimphie threat $\omega_{f}=\infty$, and hence $\beta=\omega_{4}=\infty$ and $\beta \in b$. This is also a contradiction.
so if $\beta=w_{7}$ efren $\beta=b$.
The same argument shows that $\alpha=a$.

Thiovern: Counider the IVP
(*) $\quad \dot{x}=v(x)$

$$
x\left(t_{0}\right)=x_{0}
$$

where $v: \Omega \longrightarrow \mathbb{R}$ is a e^{\prime} funtion ant Ω is an open interval in \mathbb{R}. Then there a maxinul solution ($J_{\text {max }}, Q_{\text {max }}$) of (*) such that if (J, φ) is a solu of $*$ then $J \in J_{\text {mas }}$ and $Q=\varphi_{\text {masi }} / J$.
Proof:
Suppre $r\left(x_{0}\right) \neq 0$. Then we have aluundy seen thes is tive. Suppore $r\left(x_{0}\right)=0$. We dain that the max'l solutions of $(*)$ is the coustant funtion

$$
\varphi(t) \equiv x_{0}
$$ $t \in \mathbb{R}$.

(In ltus care Jinas $=\mathbb{R}$)
It is dean that the conctant funtion defrid above is a solution of $(*)$. Counescly suppue (J, ψ) is a solution of (\in). Suppue $v(\psi(\tau)) \neq 0$ for some $\tau \in J$. Then $\psi(t) \in \Omega^{r e q}$ in a nujeubounhood of τ. Let $x^{*}=\varphi(\tau)$. Then \mathcal{Y} is a solu of the lUP

$$
\dot{x}=v(x) \quad x(\tau)=x^{*} .
$$

Fom the puoins Propn, ψ takk valus only in $\Omega^{\text {reg. }}$. This is a contuadedton.

Befontion: Let $A \subseteq \mathbb{R}^{n}$. A funtron $\vec{f}: A \rightarrow \mathbb{R}^{n}$ is said to be Lipscliity if $\exists L>0$ sunh that

$$
\|\vec{f}(\vec{x})-\vec{f}(\vec{y})\| \leqslant L\|\vec{x}-\vec{y}\| \quad \forall \vec{x}, \vec{y} \in A .
$$

The comtant L is called a Lipscluty coustant for \vec{f}.
suppore $I=[a, b), a \in(-\infty, \infty), b \in(a, \infty]$. We say $\vec{f}: I \rightarrow \mathbb{R}^{n}$ is l_{e}^{\prime} if $\left.\frac{d^{+}}{d t}\right|_{t=a} \vec{f}$ existo, and the

Usulting funtion $\dot{\dot{f}}: I \longrightarrow \mathbb{R}^{n}$ is contrinous, Here $\dot{\vec{f}}(a)$ is the one-sided denivature eve just mentionsed. suinarly twe com make surse of b^{\prime} funtions on $(a, b],[a, b]$.

Notations:
Let $\vec{a} \in \mathbb{R}^{n}, r>0$.

$$
\begin{aligned}
& B(\vec{a}, r)=\left\{\vec{x} \in \mathbb{R}^{n} \mid\|\vec{x}-\vec{a}\|<r\right\} \\
& \bar{B}(\vec{a}, r)=\left\{\vec{x} \in \mathbb{R}^{n} \mid\|\vec{x}-\vec{a}\| \leq r\right\}
\end{aligned}
$$

Let I be a clocel and bounded interval in \mathbb{R}.
$C(I, n)=$ The sed of continous funtions on I taleing values in \mathbb{R}^{n}.
We know from earlier couses that $\left.C(I, n),\|\cdot\|_{\infty}\right)$ is a Bamoch space, lie. it is a complate noumed vertor space.

To prove the existence and!-vers of solubinis to DE's to lUP.s on I, it is move convenient to work with a different norma denoted II II w..

Let t_{0} be the mid point point of I (recall I is now cloud ε hd), and $|I|=2 b$. Then $I=\left[t_{0}-b, t_{0}+b\right]$. Let L be a positive number.

Define

$$
\|\cdot\|_{w}=\|\cdot\|_{w_{J}}: C(I, n) \longrightarrow[0, \infty)
$$

by

$$
\|\vec{f}\|_{w}=\sup _{t \in I}\left\{e^{-2 L\left|t-t_{0}\right|}|\vec{f}(t)|\right\}
$$

It is straightformand to chuck that II. Nw is a norm.

Lemma: $\|\cdot\|_{w}$ and $\|\cdot\|_{\infty}$ are equinalut norms.
Proxy:

$$
e^{-L b} \cdot\|\vec{f}\|_{\infty} \leqslant\|\vec{f}\|_{\omega} \leq\|\vec{f}\|_{\infty} \quad \forall \vec{f} \in C(I, n)
$$

Theovern (Picard-Lindeli-1): Let $\vec{a} \in \mathbb{R}^{n}, t_{0} \in \mathbb{R}$ and let

$$
\vec{v}:\left[t_{0}-\alpha, t_{0}+\alpha\right] \times \vec{B}(\vec{a}, r) \longrightarrow \mathbb{R}^{n}
$$

be a conturons map with upper bound M for $\|v(t \vec{x})\|$. Suppose funtren that there is a positive constant L such that for earl $t \in\left[t_{0}-\alpha, t_{0}+\alpha\right]$, the function $\vec{v}(t,-): \bar{B}(\vec{a}, r) \longrightarrow \mathbb{R}^{n}$ is Lipechitz with Lipestintz constant L. Then the IVP

$$
\dot{\vec{x}}=\vec{v}(t, \vec{x}), \vec{x}\left(t_{0}\right)=\vec{a}
$$

has a unique solution defined on $\left[t_{0}-b, t_{0}+b\right]$ cohere $b=\min \left\{\alpha, \frac{r}{M}\right\}$.
Prof?:
Let $I=\left[t_{0}-b, t_{0}+b\right]$ where $b=\min \left\{\alpha, \frac{r}{M}\right\}$.
Let $\|\cdot\|_{w}=\|\cdot\|_{\omega_{z}}$ where L is the constant in the statement of the theorem. Real

$$
\|\vec{f}\|_{w}=\sup _{t \in I}\left\{e^{-2 L\left|t-t_{2}\right|}|\vec{f}(t)|\right\}
$$

Let $x=\{\vec{f} \in C(I, n) \mid \vec{f}(I) \subseteq \bar{B}(\vec{a}, r)\}$

$$
=\{\vec{f} \in C(1, x) \mid \quad\|\vec{f}(t)-\vec{a}\| \leqslant r, t \in I\}
$$

Clearly, x is closed in $C(I, n)$. Therfere $\left(x,\|\cdot\|_{0}\right)$ is complete. Sine $\|\cdot\|_{\infty}$ and $\|\cdot\|_{w}$ are equivalent, $(x,\|\cdot\| w)$ is also complete.

For $\vec{f} \in X$ and $t \in I$, define

$$
(T \vec{f})(t):=\vec{a}+\int_{t_{0}}^{t} \vec{v}(s, \vec{f}(s)) d s .
$$

The map $t \longmapsto(T \vec{f})(t)$ is diffoble on I (found'l thin 1 call.) and heme continuous. Now

$$
\begin{aligned}
&\|T \vec{f}-\vec{a}\|=\left\|\int_{t_{0}}^{t} \vec{v}(s, \vec{f}(s)) d v\right\| \leqslant\left|\int_{t_{0}}^{t}\|\vec{v}(s, \vec{f}(s))\| d_{0}\right| \\
& \leqslant M\left|\int_{t_{0}}^{t} d s\right| \\
& \leqslant M\left|t-t_{0}\right| \\
& \leqslant M b \\
& \leqslant r \quad \text { since } b=\operatorname{Min}\left\{2, \frac{r}{M}\right\} \\
& \text { hence } b \leqslant \frac{r}{M}
\end{aligned}
$$

Thus $T \vec{f} \in X$. Hence we have a map

$$
T: x \longrightarrow x \text {. }
$$

suppose $\vec{f}, \vec{g} \in X$. Then :

$$
\begin{aligned}
& e^{-2 L\left|t-t_{0}\right|} \cdot|(T \vec{f})(t)-(\tau \vec{g})(t)| \\
= & e^{-2 L\left|t-t_{0}\right|}\left|\int_{t_{0}}^{t}\{\vec{v}(s, \vec{f}(s))-\vec{v}(s, \vec{g}(s))\} d s\right| \\
\leqslant & e^{-2 L\left|t-t_{0}\right|} \cdot\left|\int_{t_{0}}^{t}\|\vec{v}(s, \vec{f}(s))-\vec{v}(s, \vec{g}(s))\| d s\right| \\
\leqslant & e^{-2 L\left|t-t_{0}\right|} \cdot L\left|\int_{t_{0}}^{t}\|\vec{f}(s)-\vec{g}(s)\| d s\right|
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant L e^{-2 L\left|t-t_{0}\right|}\left|\int_{t_{0}}^{t} e^{2 L\left|s-t_{0}\right|}\|\vec{f}-\vec{\jmath}\|_{w} d s\right| \\
& =\frac{L\|\vec{f}-\vec{g}\|_{w} e^{-2 L\left|t-t_{0}\right|}}{2 L}\left|e^{2 L \mid t-t_{0}}-1\right| \\
& =\frac{1}{2}\|\vec{f}-\vec{g}\|_{w}\left(1-e^{-2 L\left|t-t_{0}\right|}\right) \\
& \leqslant \frac{1}{2}\|\vec{f}-\vec{g}\|_{w}
\end{aligned}
$$

Thus

$$
\|T \vec{f}-7 \vec{g}\|_{w} \leqslant \frac{1}{2}\|\vec{f}-\vec{g}\|_{w} .
$$

 It follows that T has a unique foxed point, say $\vec{\varphi}$.
This traundatess to

$$
\vec{Q}(t)=\vec{a}+\int_{t_{0}}^{t} \vec{v}(\Delta, \vec{\phi}(\Delta)) d \Delta,
$$

whence \vec{P} is a solution of the given IVP.
Connascly if ψ is a solution of the given IVP in $\left[t_{0}-b, t_{0}+b\right]$, then by the fundamental the of call., for $b \in I$

$$
\begin{aligned}
\vec{\psi}(t) & =\vec{a}+\int_{t_{0}}^{t} \stackrel{\rightharpoonup}{\psi}(s) d s \\
& =\vec{a}+\int_{t_{0}}^{t} \vec{v}(s, \vec{\psi}(s)) d s
\end{aligned}
$$

Hence, for $t \in I$
No need

$$
\begin{aligned}
|\vec{\varphi}(t)-\vec{a}| & =\left|\int_{t_{0}}^{t} \vec{v}(s, \vec{Y}(s)) d \Delta\right| \\
& \leqslant M \cdot\left|t-t_{0}\right| \\
& \leq M b \leq r . \quad\left(a_{2}\right. \text { before). }
\end{aligned}
$$ as Area pointed m^{t}. This is alvedy

a solus.

Thin $\vec{\psi} \in X$. From (t) $T \vec{\psi}=\vec{\psi}$, and have $\vec{\psi}=\vec{\varphi}$.

