LECTURES 26 AND 27

Dates of the Lectures: April 12 and April 19, 2021

As always, K € {R, C}.

The symbol @ is for flagging a cautionary comment or a tricky argument. It
occurs in the margins and is Knuth’s version of Bourbaki’s “dangerous bend sym-
bol”.

An n-tuple (z1,...,z,) of symbols (z; not necessarily real or complex numbers)
will also be written as a column vector when convenient. Thus

T
(X1, yapn) =
Tn
A map f from a set S to a product set T} x --- x T, will often be written as

an n-tuple f = (f1,..., fn), with f; a map from S to T}, and hence, by the above
convention, as a column vector

fi

r=:
Jn

(See Remark 2.2.2 of Lecture 5 of ANA2.)

The default norm on Euclidean spaces of the form R™ is the Euclidean norm || ||2
and we will simply denote it as || ||. The space of K-linear transformations from
K" to K™ will be denoted Homg (K™, K™) and will be identified in the standard
way with the space of m x n matrices M,, ,(K) and the operator norm' on both
spaces will be denoted || [[o. If m = n, we write M,,(R) for M,, ,(R), and L(K"™)
for Homg (K™, K™).

Note that (z1,...,2,) # [21... x,]. Each side is the transpose of the other.

1. Lyapunov’s direct method

Let U be open in R™ and v: U — R™ a € vector field on U. Let as (A) be the
differential equation

(A) z = v(x).

We use the terms equilibrium point of (A) and equilibrium point of v interchange-
ably. Both mean a singular point of v, i.e. a point on which v vanishes. Let
Q=R xU,and for (1, a) € Q, let (A)(; q), P(r,a) J(7, a) have their usual mean-
ing. We make one simplification in our notation soup: when 7 = 0 we suppress 7.
Thus J(a) = J(0, @), pq = (0, a) etc. We point out that since (A) is autonomous,
the initial time is of little importance.

Finally, we set

(1) gz=p,(t) (zeUteJ(x)).

ISee §§2.1 of Lecture 5 of ANA2.


https://www.cmi.ac.in/~pramath/ANA2/Lectures/Lecture5.pdf
https://www.cmi.ac.in/~pramath/ANA2/Lectures/Lecture5.pdf

An equilibrium point of the flow {g'} is an equilibrium point of (A). Technically,
from the dynamical systems point of view, the notion of an equilibrium of stationary
point applies to a flow {g'}. This term when applied to (A) or v is a small abuse
of terminology. However, (A) or v contain all the information of the flow {g*} and
conversely, the flow contains all the information of (A) as well as of v.

1.1. Interval of existence near a stable equilibrium point. Recall that an
equilibrium position @y of (A) is said to be stable (in Lyapunov’s sense) if given
g > 0, there exists § > 0 such that B(xq, 6) C U and for & € B(x, ), the solution
5 of (A) satisfies the inequality ||, (t) — xo]| < € for all ¢t € [0, co) N J ().

Setting t = 0 we see that § < e.

Recall further that an equilibrium point xy is said to be asymptotically sta-
ble in the sense of Lyapunov if there exists 6 > 0 such that B(xo, 6) C U and
lim;_, o g'® = xo for all x € B(xg, §). The reader may wonder how one can let
t approach oo, since J(x) may not contain [0, o). The following lemma answers
that question.

Lemma 1.1.1. Suppose xq is a stable equilibrium point of the dynamical system
represented by the differential equation (A) and suppose 0 < & < € are real numbers
such that B(zo, €) C U and such that g'xz € B(xo, €) for all t € [0, c0) N J(x)
whenever € B(xg, §). Then [0, co) N J(x) = [0, 00).

Proof. Let J(x) = (w_, wy). Let T be a positive time point. Then Kp = [0, T
B(xo, €) is a compact subset of 2. We know then that (¢, g'z) must leave Kr as
t T wy. Moreover g'z € B(xy, €) for t € [0, T] N J(x). It follows that (¢, ) must
hit {T'} x B(xo, €), whence T' € J(x). Since T' > 0 was arbitrary, we are done. [

1.2. Lyapunov functions. Fix an equilibrium point &g of (A). Let V' be an open
neighbourhood of o in U and Q: V — R a continuous map such that Q is € on
V ~{xo}. In this case, define @: V' — R by the formula

(12.1) O(e) = {<V@<w>, v(@), if 2 #

0, if € = .

Let @ be as above. It is said to be a Lyapunov function for v (or (A), or the
flow {g'}) at =, if in addition to the above conditions, it also satisfies

1. Q(w) >0 forx € V~ {xo}, Q(zo) =0.
2. Q(x) <0forx eV ~{xp}.

If in addition we have

3. Q(z) < 0 for x € V ~ {mzo}.

then @ is called a strict Lyapunov function at xq for v.

1.2.2. If @ is a strict Lyapunov function at xy then xy is the only equilibrium
point of v in the domain V of Q. Indeed, if @ € V' \ {x(}, then by definition of a
strict Lyapunov function, (VQ(z), v(x)) < 0, whence v(x) # 0.

If the vector field v and the equilibrium point ¢ are understood, we often shorten
the phrases “Lyapunov function at @ for v” and “strict Lyapunov function at ag
for v” to “Lyapunov function” and “strict Lyapunov function” respectively.

The proof of the following theorem follows the one given in [C, Theorem 1.55,
p.29].
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Theorem 1.2.3. Let g be an equilibrium point for (A). If we have a Lyapunov
function Q at xg for v. Then xq is a stable equilibrium point. If Q) is a strict
Lyapunov function, then xq is an asymptotically stable equilibrium point.

Proof. Let Q: V — R be a Lyapunov function at xy. Suppose € > 0 is given. We
have to find 6 > 0 such that g'z € B(xo, ¢) for all ¢t € [0, co] N J(x) whenever
x € B(xod) NU. Without loss of generality, we may assume B(zg, €) C V. Let
S = S(xg, €) be the set of points y in R™ such that ||y — zg|| =e. Then S C V.
Let m be the infimum of @ on S. Since @ is continuous and Q(xg) = 0, there
exists 0 > 0 such that B(zg, §) C V, and Q(x) < m/2 for all x € B(xo, ). Let
x € B(zg, 0). Set Jso = [0, 00) N J(x). Since Q(z) < 0 for € V ~ {xo},
we see easily that Q(g'x) is a non-increasing function of ¢ in J>o. It follows that
Q(g'z) < m/2 for all t € J>o. Thus g'x ¢ S for any t € J>¢. It follows that
g'x € B(xo, €) for all t € J>o. By definition of stability, ¢ is a stable equilibrium
point. In particular, J>¢ = [0, 00). It is worth pointing out, by setting ¢ = 0, that
0 <e.

/
<

Now suppose @ is a strict Lyapunov function. We wish to prove that there is an
open ball B in U, centred at g, such that lim, .., g’z = x¢ for all z € B. Let B,
be an open ball in R™ centred at xq, with B; C V. Since xq is a stable equilibrium
point, there exists an open ball B centred at xq such that B C B; and such that
for every € € B, [0, c0) C J(x) and g'x € By for t € [0,€ o). In fact, by the
proof above, if S7 is the sphere centred at &y which is the boundary of By, then we
pick B such that for |bdy € B, Q(y) is less than half the infimum of @ on S;. Let
x € B. If x = x(, then clearly lim;_,o. g = xo. So assume x # xy. Since Q is
negative on B \ {zg}, we have Q(g'x) is a decreasing function of ¢ > 0 as ¢ 1 oco.
Let

o t
f:= jnf Qg'z).
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By definition of infimum, and since Q(gx) is decreasing, there is a sequence of time
points

O=thr<ti<ta<- - <t <...T@
such that
lim Q(g"*z) = 5.

t—o0
Since B is compact, there is a subsequence of {g**z} which is convergent, and
by replacing {g'*x} by this subsequence if necessary, we may assume {g'*x} is
convergent. Let

z* = lim g"*x.

k—o0

Since Q(x*) < Q(x) (we are using the fact that Q is negative off the point ), it
follows that Q(x*) < %infyesl Q(y), whence g'z* is defined for all ¢ € [0, 00). By
the continuity of g', we see that

gtz* = lim g'g'*x = lim ¢
k—o0 k—o0

tk+1x.

Further, Q(g'™'x) < Q(g'* ) for all k > 0, since Q < 0 on V . {zo}. One taking
limits we get

Qg'z") < Qz*).

On the other hand, by definition of limits, given n > 0, there exists K > 0 such that
Qgtz*) < Qg x) < Q(g'x*)+nforall k > K. Pick [ > 1such that ¢; > tx+1.
Then we have Q(g'z*) < Q(x*) < Q(¢"=x) < Q9" 'x) < Q(g'x*) + 1, giving

Qg'z") < Q(z*) < Qg'z") + 1

for every n > 0. It follows that Q(g'x*) = Q(z*). Once again, using the fact that
Q(y) <0 for all y € V \ {xg}, we see that this can only happen if * = xy. Thus

lim g'*x = x.
k—o0

Now suppose € > 0 is given. Suppose ¢ is small enough that B(xg, ¢) C B. Let

—  inf .
y yeslch)Q(y)

By the continuity of @, we can find § > 0 such that Q(y) < 1 for all y € B(xo, 0).
By a now familiar argument,

g'y € B(zo, ), t>0.

Now there exists K > 0 such that |g'*x — xo| < 6 for k > K. Thus g'*z €
B(xg, §) for all k > K. Setting y = ¢g'*x in the above displayed relation, we see
that ¢'t'%x € B(xo, ¢) for all ¢ > 0. This is the same as saying

gz e B(xg, €), t>tk.

It follows that lim;_, g'T = xg. O
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