LECTURES 26 AND 27

Dates of the Lectures: April 12 and April 19, 2021
As always, $\mathbf{K} \in\{\mathbf{R}, \mathbf{C}\}$.
The symbol is for flagging a cautionary comment or a tricky argument. It occurs in the margins and is Knuth's version of Bourbaki's "dangerous bend symbol".

An n-tuple $\left(x_{1}, \ldots, x_{n}\right)$ of symbols (x_{i} not necessarily real or complex numbers) will also be written as a column vector when convenient. Thus

$$
\left(x_{1}, \ldots, x_{n}\right)=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

A map \boldsymbol{f} from a set S to a product set $T_{1} \times \cdots \times T_{n}$ will often be written as an n-tuple $\boldsymbol{f}=\left(f_{1}, \ldots, f_{n}\right)$, with f_{i} a map from S to T_{i}, and hence, by the above convention, as a column vector

$$
\boldsymbol{f}=\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right]
$$

(See Remark 2.2.2 of Lecture 5 of ANA2.)
The default norm on Euclidean spaces of the form \mathbf{R}^{n} is the Euclidean norm $\left\|\|_{2}\right.$ and we will simply denote it as $\|\|$. The space of \mathbf{K}-linear transformations from \mathbf{K}^{n} to \mathbf{K}^{m} will be denoted $\operatorname{Hom}_{\mathbf{R}}\left(\mathbf{K}^{n}, \mathbf{K}^{m}\right)$ and will be identified in the standard way with the space of $m \times n$ matrices $M_{m, n}(\mathbf{K})$ and the operator norm ${ }^{1}$ on both spaces will be denoted $\left\|\|_{0}\right.$. If $m=n$, we write $M_{n}(\mathbf{R})$ for $M_{m, n}(\mathbf{R})$, and $L\left(\mathbf{K}^{n}\right)$ for $\operatorname{Hom}_{\mathbf{K}}\left(\mathbf{K}^{n}, \mathbf{K}^{n}\right)$.

Note that $\left(x_{1}, \ldots, x_{n}\right) \neq\left[x_{1} \ldots x_{n}\right]$. Each side is the transpose of the other.

1. Lyapunov's direct method

Let U be open in \mathbf{R}^{n} and $\boldsymbol{v}: U \rightarrow \mathbf{R}^{n}$ a \mathscr{C}^{1} vector field on U. Let as (Δ) be the differential equation

$$
\dot{\boldsymbol{x}}=\boldsymbol{v}(\boldsymbol{x})
$$

We use the terms equilibrium point of (Δ) and equilibrium point of \boldsymbol{v} interchangeably. Both mean a singular point of \boldsymbol{v}, i.e. a point on which \boldsymbol{v} vanishes. Let $\Omega=\mathbf{R} \times U$, and for $(\tau, \boldsymbol{a}) \in \Omega$, let $(\Delta)_{(\tau, \boldsymbol{a})}, \boldsymbol{\varphi}_{(\tau, \boldsymbol{a})}, J(\tau, \boldsymbol{a})$ have their usual meaning. We make one simplification in our notation soup: when $\tau=0$ we suppress τ. Thus $J(\boldsymbol{a})=J(0, \boldsymbol{a}), \boldsymbol{\varphi}_{\boldsymbol{a}}=\boldsymbol{\varphi}_{(0, \boldsymbol{a})}$ etc. We point out that since (Δ) is autonomous, the initial time is of little importance.

Finally, we set

$$
\begin{equation*}
g^{t} \boldsymbol{x}=\boldsymbol{\varphi}_{\boldsymbol{x}}(t) \quad(\boldsymbol{x} \in U, t \in J(\boldsymbol{x})) . \tag{1}
\end{equation*}
$$

[^0]An equilibrium point of the flow $\left\{g^{t}\right\}$ is an equilibrium point of (Δ). Technically, from the dynamical systems point of view, the notion of an equilibrium of stationary point applies to a flow $\left\{g^{t}\right\}$. This term when applied to (Δ) or \boldsymbol{v} is a small abuse of terminology. However, (Δ) or \boldsymbol{v} contain all the information of the flow $\left\{g^{t}\right\}$ and conversely, the flow contains all the information of (Δ) as well as of \boldsymbol{v}.
1.1. Interval of existence near a stable equilibrium point. Recall that an equilibrium position \boldsymbol{x}_{0} of (Δ) is said to be stable (in Lyapunov's sense) if given $\varepsilon>0$, there exists $\delta>0$ such that $B\left(\boldsymbol{x}_{0}, \delta\right) \subset U$ and for $\boldsymbol{x} \in B\left(\boldsymbol{x}_{0}, \delta\right)$, the solution $\boldsymbol{\varphi}_{\boldsymbol{x}}$ of (Δ) satisfies the inequality $\left\|\boldsymbol{\varphi}_{\boldsymbol{x}}(t)-\boldsymbol{x}_{0}\right\|<\varepsilon$ for all $t \in[0, \infty) \cap J(\boldsymbol{x})$.

Setting $t=0$ we see that $\delta<\varepsilon$.
Recall further that an equilibrium point \boldsymbol{x}_{0} is said to be asymptotically stable in the sense of Lyapunov if there exists $\delta>0$ such that $B\left(\boldsymbol{x}_{0}, \delta\right) \subset U$ and $\lim _{t \rightarrow \infty} g^{t} \boldsymbol{x}=\boldsymbol{x}_{0}$ for all $\boldsymbol{x} \in B\left(\boldsymbol{x}_{0}, \delta\right)$. The reader may wonder how one can let t approach ∞, since $J(\boldsymbol{x})$ may not contain $[0, \infty)$. The following lemma answers that question.

Lemma 1.1.1. Suppose \boldsymbol{x}_{0} is a stable equilibrium point of the dynamical system represented by the differential equation (Δ) and suppose $0<\delta<\varepsilon$ are real numbers such that $\bar{B}\left(\boldsymbol{x}_{0}, \varepsilon\right) \subset U$ and such that $g^{t} \boldsymbol{x} \in B\left(\boldsymbol{x}_{0}, \varepsilon\right)$ for all $t \in[0, \infty) \cap J(\boldsymbol{x})$ whenever $\boldsymbol{x} \in B\left(\boldsymbol{x}_{0}, \delta\right)$. Then $[0, \infty) \cap J(\boldsymbol{x})=[0, \infty)$.

Proof. Let $J(\boldsymbol{x})=\left(\omega_{-}, \omega_{+}\right)$. Let T be a positive time point. Then $K_{T}=[0, T] \times$ $\bar{B}\left(\boldsymbol{x}_{0}, \varepsilon\right)$ is a compact subset of Ω. We know then that $\left(t, g^{t} \boldsymbol{x}\right)$ must leave K_{T} as $t \uparrow \omega_{+}$. Moreover $g^{t} \boldsymbol{x} \in B\left(\boldsymbol{x}_{0}, \varepsilon\right)$ for $t \in[0, T] \cap J(\boldsymbol{x})$. It follows that (t, \boldsymbol{x}) must hit $\{T\} \times B\left(\boldsymbol{x}_{0}, \varepsilon\right)$, whence $T \in J(\boldsymbol{x})$. Since $T>0$ was arbitrary, we are done.
1.2. Lyapunov functions. Fix an equilibrium point \boldsymbol{x}_{0} of (Δ). Let V be an open neighbourhood of \boldsymbol{x}_{0} in U and $Q: V \rightarrow \mathbf{R}$ a continuous map such that Q is \mathscr{C}^{1} on $V \backslash\left\{\boldsymbol{x}_{0}\right\}$. In this case, define $\dot{Q}: V \rightarrow \mathbf{R}$ by the formula

$$
\dot{Q}(\boldsymbol{x})= \begin{cases}\langle\boldsymbol{\nabla} Q(\boldsymbol{x}), \boldsymbol{v}(\boldsymbol{x})\rangle, & \text { if } \boldsymbol{x} \neq \boldsymbol{x}_{0} \tag{1.2.1}\\ \mathbf{0}, & \text { if } \boldsymbol{x}=\boldsymbol{x}_{0}\end{cases}
$$

Let Q be as above. It is said to be a Lyapunov function for \boldsymbol{v} (or (Δ), or the flow $\left.\left\{g^{t}\right\}\right)$ at \boldsymbol{x}_{0} if in addition to the above conditions, it also satisfies

1. $Q(\boldsymbol{x})>0$ for $\boldsymbol{x} \in V \backslash\left\{\boldsymbol{x}_{0}\right\}, Q\left(\boldsymbol{x}_{0}\right)=0$.
2. $\dot{Q}(\boldsymbol{x}) \leq 0$ for $\boldsymbol{x} \in V \backslash\left\{\boldsymbol{x}_{0}\right\}$.

If in addition we have
3. $\dot{Q}(\boldsymbol{x})<0$ for $\boldsymbol{x} \in V \backslash\left\{\boldsymbol{x}_{0}\right\}$.
then Q is called a strict Lyapunov function at \boldsymbol{x}_{0} for \boldsymbol{v}.
1.2.2. If Q is a strict Lyapunov function at \boldsymbol{x}_{0} then \boldsymbol{x}_{0} is the only equilibrium point of \boldsymbol{v} in the domain V of Q. Indeed, if $\boldsymbol{x} \in V \backslash\left\{\boldsymbol{x}_{0}\right\}$, then by definition of a strict Lyapunov function, $\langle\nabla Q(\boldsymbol{x}), \boldsymbol{v}(\boldsymbol{x})\rangle<0$, whence $\boldsymbol{v}(\boldsymbol{x}) \neq \mathbf{0}$.

If the vector field \boldsymbol{v} and the equilibrium point \boldsymbol{x}_{0} are understood, we often shorten the phrases "Lyapunov function at \boldsymbol{x}_{0} for \boldsymbol{v} " and "strict Lyapunov function at \boldsymbol{x}_{0} for \boldsymbol{v} " to "Lyapunov function" and "strict Lyapunov function" respectively.

The proof of the following theorem follows the one given in [C, Theorem 1.55, p.29].

Theorem 1.2.3. Let \boldsymbol{x}_{0} be an equilibrium point for (Δ). If we have a Lyapunov function Q at \boldsymbol{x}_{0} for \boldsymbol{v}. Then \boldsymbol{x}_{0} is a stable equilibrium point. If Q is a strict Lyapunov function, then \boldsymbol{x}_{0} is an asymptotically stable equilibrium point.

Proof. Let $Q: V \rightarrow \mathbf{R}$ be a Lyapunov function at \boldsymbol{x}_{0}. Suppose $\varepsilon>0$ is given. We have to find $\delta>0$ such that $g^{t} \boldsymbol{x} \in B\left(\boldsymbol{x}_{0}, \varepsilon\right)$ for all $t \in[0, \infty] \cap J(\boldsymbol{x})$ whenever $\boldsymbol{x} \in B\left(\boldsymbol{x}_{0} \delta\right) \cap U$. Without loss of generality, we may assume $\bar{B}\left(\boldsymbol{x}_{0}, \varepsilon\right) \subset V$. Let $S=S\left(\boldsymbol{x}_{0}, \varepsilon\right)$ be the set of points \boldsymbol{y} in \mathbf{R}^{n} such that $\left\|\boldsymbol{y}-\boldsymbol{x}_{0}\right\|=\varepsilon$. Then $S \subset V$. Let m be the infimum of Q on S. Since Q is continuous and $Q\left(\boldsymbol{x}_{0}\right)=0$, there exists $\delta>0$ such that $B\left(\boldsymbol{x}_{0}, \delta\right) \subset V$, and $Q(\boldsymbol{x})<m / 2$ for all $\boldsymbol{x} \in B\left(\boldsymbol{x}_{0}, \delta\right)$. Let $\boldsymbol{x} \in B\left(\boldsymbol{x}_{0}, \delta\right)$. Set $J_{\geq 0}=[0, \infty) \cap J(\boldsymbol{x})$. Since $\dot{Q}(\boldsymbol{x}) \leq 0$ for $\boldsymbol{x} \in V \backslash\left\{\boldsymbol{x}_{0}\right\}$, we see easily that $Q\left(g^{\bar{t}} \boldsymbol{x}\right)$ is a non-increasing function of t in $J_{\geq 0}$. It follows that $Q\left(g^{t} \boldsymbol{x}\right) \leq m / 2$ for all $t \in J_{\geq 0}$. Thus $g^{t} \boldsymbol{x} \notin S$ for any $t \in J_{\geq 0}$. It follows that $g^{t} \boldsymbol{x} \in B\left(\boldsymbol{x}_{0}, \varepsilon\right)$ for all $t \in J_{\geq 0}$. By definition of stability, \boldsymbol{x}_{0} is a stable equilibrium point. In particular, $J_{\geq 0}=[0, \infty)$. It is worth pointing out, by setting $t=0$, that $\delta<\varepsilon$.

Now suppose Q is a strict Lyapunov function. We wish to prove that there is an open ball B in U, centred at \boldsymbol{x}_{0}, such that $\lim _{t \rightarrow \infty} g^{t} \boldsymbol{x}=\boldsymbol{x}_{0}$ for all $\boldsymbol{x} \in B$. Let B_{1} be an open ball in \mathbf{R}^{n} centred at \boldsymbol{x}_{0}, with $\bar{B}_{1} \subset V$. Since \boldsymbol{x}_{0} is a stable equilibrium point, there exists an open ball B centred at \boldsymbol{x}_{0} such that $B \subset \bar{B}_{1}$ and such that for every $\boldsymbol{x} \in B,[0, \infty) \subset J(\boldsymbol{x})$ and $g^{t} \boldsymbol{x} \in B_{1}$ for $t \in[0, \in \infty)$. In fact, by the proof above, if S_{1} is the sphere centred at \boldsymbol{x}_{0} which is the boundary of B_{1}, then we pick B such that for $] b d y \in B, Q(\boldsymbol{y})$ is less than half the infimum of Q on S_{1}. Let $\boldsymbol{x} \in B$. If $\boldsymbol{x}=\boldsymbol{x}_{0}$, then clearly $\lim _{t \rightarrow \infty} g^{t} \boldsymbol{x}=\boldsymbol{x}_{0}$. So assume $\boldsymbol{x} \neq \boldsymbol{x}_{0}$. Since \dot{Q} is negative on $B \backslash\left\{\boldsymbol{x}_{0}\right\}$, we have $Q\left(g^{t} \boldsymbol{x}\right)$ is a decreasing function of $t \geq 0$ as $t \uparrow \infty$. Let

$$
\beta:=\inf _{t \in[0, \infty)} Q\left(g^{t} \boldsymbol{x}\right)
$$

By definition of infimum, and since $Q\left(g^{t} \boldsymbol{x}\right)$ is decreasing, there is a sequence of time points

$$
0=t_{0}<t_{1}<t_{2}<\cdots<t_{k}<\ldots \uparrow \infty
$$

such that

$$
\lim _{t \rightarrow \infty} Q\left(g^{t_{k}} \boldsymbol{x}\right)=\beta
$$

Since \bar{B}_{1} is compact, there is a subsequence of $\left\{g^{t_{k}} \boldsymbol{x}\right\}$ which is convergent, and by replacing $\left\{g^{t_{k}} \boldsymbol{x}\right\}$ by this subsequence if necessary, we may assume $\left\{g^{t_{k}} \boldsymbol{x}\right\}$ is convergent. Let

$$
\boldsymbol{x}^{*}=\lim _{k \rightarrow \infty} g^{t_{k}} \boldsymbol{x}
$$

Since $Q\left(\boldsymbol{x}^{*}\right)<Q(\boldsymbol{x})$ (we are using the fact that \dot{Q} is negative off the point \boldsymbol{x}_{0}), it follows that $Q\left(\boldsymbol{x}^{*}\right)<\frac{1}{2} \inf _{\boldsymbol{y} \in S_{1}} Q(\boldsymbol{y})$, whence $g^{t} \boldsymbol{x}^{*}$ is defined for all $t \in[0, \infty)$. By the continuity of g^{1}, we see that

$$
g^{1} \boldsymbol{x}^{*}=\lim _{k \rightarrow \infty} g^{1} g^{t_{k}} \boldsymbol{x}=\lim _{k \rightarrow \infty} g^{t_{k}+1} \boldsymbol{x}
$$

Further, $Q\left(g^{t_{k}+1} \boldsymbol{x}\right)<Q\left(g^{t_{k}} \boldsymbol{x}\right)$ for all $k \geq 0$, since $\dot{Q}<0$ on $V \backslash\left\{\boldsymbol{x}_{0}\right\}$. One taking limits we get

$$
Q\left(g^{1} \boldsymbol{x}^{*}\right) \leq Q\left(\boldsymbol{x}^{*}\right)
$$

On the other hand, by definition of limits, given $\eta>0$, there exists $K \geq 0$ such that $Q\left(g^{1} \boldsymbol{x}^{*}\right)<Q\left(g^{t_{k}+1} \boldsymbol{x}\right)<Q\left(g^{1} \boldsymbol{x}^{*}\right)+\eta$ for all $k \geq K$. Pick $l \geq 1$ such that $t_{l}>t_{K}+1$. Then we have $Q\left(g^{1} \boldsymbol{x}^{*}\right) \leq Q\left(\boldsymbol{x}^{*}\right)<Q\left(g^{t_{l}} \boldsymbol{x}\right)<Q\left(g^{t_{K}+1} \boldsymbol{x}\right)<Q\left(g^{1} \boldsymbol{x}^{*}\right)+\eta$, giving

$$
Q\left(g^{1} \boldsymbol{x}^{*}\right) \leq Q\left(\boldsymbol{x}^{*}\right)<Q\left(g^{1} \boldsymbol{x}^{*}\right)+\eta
$$

for every $\eta>0$. It follows that $Q\left(g^{1} \boldsymbol{x}^{*}\right)=Q\left(\boldsymbol{x}^{*}\right)$. Once again, using the fact that $\dot{Q}(\boldsymbol{y})<0$ for all $\boldsymbol{y} \in V \backslash\left\{\boldsymbol{x}_{0}\right\}$, we see that this can only happen if $\boldsymbol{x}^{*}=\boldsymbol{x}_{0}$. Thus

$$
\lim _{k \rightarrow \infty} g^{t_{k}} \boldsymbol{x}=\boldsymbol{x}_{0}
$$

Now suppose $\varepsilon>0$ is given. Suppose ε is small enough that $B\left(\boldsymbol{x}_{0}, \varepsilon\right) \subset B$. Let

$$
\gamma=\inf _{\boldsymbol{y} \in S\left(\boldsymbol{x}_{0}, \varepsilon\right)} Q(\boldsymbol{y})
$$

By the continuity of Q, we can find $\delta>0$ such that $Q(\boldsymbol{y})<\frac{1}{2} \gamma$ for all $\boldsymbol{y} \in B\left(\boldsymbol{x}_{0}, \delta\right)$. By a now familiar argument,

$$
g^{t} \boldsymbol{y} \in B\left(\boldsymbol{x}_{0}, \varepsilon\right), \quad t \geq 0
$$

Now there exists $K \geq 0$ such that $\left\|g^{t_{k}} \boldsymbol{x}-\boldsymbol{x}_{0}\right\|<\delta$ for $k \geq K$. Thus $g^{t_{k}} \boldsymbol{x} \in$ $B\left(\boldsymbol{x}_{0}, \delta\right)$ for all $k \geq K$. Setting $\boldsymbol{y}=g^{t_{K}} \boldsymbol{x}$ in the above displayed relation, we see that $g^{t+t_{K}} \boldsymbol{x} \in B\left(\boldsymbol{x}_{0}, \varepsilon\right)$ for all $t \geq 0$. This is the same as saying

$$
g^{t} \boldsymbol{x} \in B\left(\boldsymbol{x}_{0}, \varepsilon\right), \quad t \geq t_{K} .
$$

It follows that $\lim _{t \rightarrow \infty} g^{t} \boldsymbol{x}=\boldsymbol{x}_{0}$.

References

[A1] V. I. Arnold, Ordinary Differential Equations, translated by Richard A. Silverman, MIT Press (also Prentice-Hall, India), Cambridge,MA, U.S.A., 1973.
[A2] V. I. Arnold, Ordinary Differential Equations, Third Edition, translated by Roger Cooke, Universitext, Springer-Verlag, Berlin, 2006.
[B] J. Burke, Notes of course given at University of Washington, http://sites.math. washington.edu/~burke/crs/555/555_notes/continuity.pdf.
[C] C. Chicone, Ordinary Differential Equations with Applications, Springer, 2006.
[CL] E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGrawHill, New York, 1955.
[G] C.P. Grant, Theory of Ordinary Differential Equations. https://www.math.utah.edu/ ~treiberg/GrantTodes2008.pdf, Brigham Young University.

[^0]: ${ }^{1}$ See $\S \S 2.1$ of Lecture 5 of ANA2.

