LECTURES 26 AND 27

Dates of the Lectures: April 12 and April 19, 2021

As always, $\mathbf{K} \in {\{\mathbf{R}, \mathbf{C}\}}$.

The symbol 2 is for flagging a cautionary comment or a tricky argument. It occurs in the margins and is Knuth's version of Bourbaki's "dangerous bend symbol".

An *n*-tuple (x_1, \ldots, x_n) of symbols $(x_i \text{ not necessarily real or complex numbers}) will also be written as a column vector when convenient. Thus$

$$(x_1,\ldots,x_n) = \begin{bmatrix} x_1\\ \vdots\\ x_n \end{bmatrix}$$

A map f from a set S to a product set $T_1 \times \cdots \times T_n$ will often be written as an *n*-tuple $f = (f_1, \ldots, f_n)$, with f_i a map from S to T_i , and hence, by the above convention, as a column vector

$$f = \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix}.$$

(See Remark 2.2.2 of Lecture 5 of ANA2.)

The default norm on Euclidean spaces of the form \mathbf{R}^n is the Euclidean norm $\| \|_2$ and we will simply denote it as $\| \|$. The space of **K**-linear transformations from \mathbf{K}^n to \mathbf{K}^m will be denoted $\operatorname{Hom}_{\mathbf{R}}(\mathbf{K}^n, \mathbf{K}^m)$ and will be identified in the standard way with the space of $m \times n$ matrices $M_{m,n}(\mathbf{K})$ and the operator norm¹ on both spaces will be denoted $\| \|_{\circ}$. If m = n, we write $M_n(\mathbf{R})$ for $M_{m,n}(\mathbf{R})$, and $L(\mathbf{K}^n)$ for $\operatorname{Hom}_{\mathbf{K}}(\mathbf{K}^n, \mathbf{K}^n)$.

Note that $(x_1, \ldots, x_n) \neq [x_1 \ldots x_n]$. Each side is the transpose of the other.

1. Lyapunov's direct method

Let U be open in \mathbb{R}^n and $v: U \to \mathbb{R}^n$ a \mathscr{C}^1 vector field on U. Let as (Δ) be the differential equation

$$\dot{\boldsymbol{x}} = \boldsymbol{v}(\boldsymbol{x})$$

We use the terms equilibrium point of (Δ) and equilibrium point of v interchangeably. Both mean a singular point of v, i.e. a point on which v vanishes. Let $\Omega = \mathbf{R} \times U$, and for $(\tau, \mathbf{a}) \in \Omega$, let $(\Delta)_{(\tau, \mathbf{a})}, \varphi_{(\tau, \mathbf{a})}, J(\tau, \mathbf{a})$ have their usual meaning. We make one simplification in our notation soup: when $\tau = 0$ we suppress τ . Thus $J(\mathbf{a}) = J(0, \mathbf{a}), \varphi_{\mathbf{a}} = \varphi_{(0, \mathbf{a})}$ etc. We point out that since (Δ) is autonomous, the initial time is of little importance.

Finally, we set

(1)
$$g^{t}\boldsymbol{x} = \boldsymbol{\varphi}_{\boldsymbol{x}}(t) \qquad (\boldsymbol{x} \in U, t \in J(\boldsymbol{x})).$$

¹See §§2.1 of Lecture 5 of ANA2.

An equilibrium point of the flow $\{g^t\}$ is an equilibrium point of (Δ) . Technically, from the dynamical systems point of view, the notion of an equilibrium of stationary point applies to a flow $\{g^t\}$. This term when applied to (Δ) or \boldsymbol{v} is a small abuse of terminology. However, (Δ) or \boldsymbol{v} contain all the information of the flow $\{g^t\}$ and conversely, the flow contains all the information of (Δ) as well as of \boldsymbol{v} .

1.1. Interval of existence near a stable equilibrium point. Recall that an equilibrium position \boldsymbol{x}_0 of (Δ) is said to be *stable (in Lyapunov's sense)* if given $\varepsilon > 0$, there exists $\delta > 0$ such that $B(\boldsymbol{x}_0, \delta) \subset U$ and for $\boldsymbol{x} \in B(\boldsymbol{x}_0, \delta)$, the solution $\boldsymbol{\varphi}_{\boldsymbol{x}}$ of (Δ) satisfies the inequality $\|\boldsymbol{\varphi}_{\boldsymbol{x}}(t) - \boldsymbol{x}_0\| < \varepsilon$ for all $t \in [0, \infty) \cap J(\boldsymbol{x})$.

Setting t = 0 we see that $\delta < \varepsilon$.

Recall further that an equilibrium point \boldsymbol{x}_0 is said to be asymptotically stable in the sense of Lyapunov if there exists $\delta > 0$ such that $B(\boldsymbol{x}_0, \delta) \subset U$ and $\lim_{t\to\infty} g^t \boldsymbol{x} = \boldsymbol{x}_0$ for all $\boldsymbol{x} \in B(\boldsymbol{x}_0, \delta)$. The reader may wonder how one can let t approach ∞ , since $J(\boldsymbol{x})$ may not contain $[0, \infty)$. The following lemma answers that question.

Lemma 1.1.1. Suppose \mathbf{x}_0 is a stable equilibrium point of the dynamical system represented by the differential equation (Δ) and suppose $0 < \delta < \varepsilon$ are real numbers such that $\overline{B}(\mathbf{x}_0, \varepsilon) \subset U$ and such that $g^t \mathbf{x} \in B(\mathbf{x}_0, \varepsilon)$ for all $t \in [0, \infty) \cap J(\mathbf{x})$ whenever $\mathbf{x} \in B(\mathbf{x}_0, \delta)$. Then $[0, \infty) \cap J(\mathbf{x}) = [0, \infty)$.

Proof. Let $J(\boldsymbol{x}) = (\omega_{-}, \omega_{+})$. Let T be a positive time point. Then $K_{T} = [0, T] \times \overline{B}(\boldsymbol{x}_{0}, \varepsilon)$ is a compact subset of Ω . We know then that $(t, g^{t}\boldsymbol{x})$ must leave K_{T} as $t \uparrow \omega_{+}$. Moreover $g^{t}\boldsymbol{x} \in B(\boldsymbol{x}_{0}, \varepsilon)$ for $t \in [0, T] \cap J(\boldsymbol{x})$. It follows that (t, \boldsymbol{x}) must hit $\{T\} \times B(\boldsymbol{x}_{0}, \varepsilon)$, whence $T \in J(\boldsymbol{x})$. Since T > 0 was arbitrary, we are done. \Box

1.2. Lyapunov functions. Fix an equilibrium point \boldsymbol{x}_0 of (Δ) . Let V be an open neighbourhood of \boldsymbol{x}_0 in U and $Q: V \to \mathbf{R}$ a continuous map such that Q is \mathscr{C}^1 on $V \setminus \{\boldsymbol{x}_0\}$. In this case, define $\dot{Q}: V \to \mathbf{R}$ by the formula

(1.2.1)
$$\dot{Q}(\boldsymbol{x}) = \begin{cases} \langle \boldsymbol{\nabla} Q(\boldsymbol{x}), \, \boldsymbol{v}(\boldsymbol{x}) \rangle, & \text{if } \boldsymbol{x} \neq \boldsymbol{x}_0 \\ \boldsymbol{0}, & \text{if } \boldsymbol{x} = \boldsymbol{x}_0. \end{cases}$$

Let Q be as above. It is said to be a Lyapunov function for \boldsymbol{v} (or (Δ) , or the flow $\{g^t\}$) at \boldsymbol{x}_0 if in addition to the above conditions, it also satisfies

1. Q(x) > 0 for $x \in V \setminus \{x_0\}, Q(x_0) = 0$.

2. $\dot{Q}(\boldsymbol{x}) \leq 0$ for $\boldsymbol{x} \in V \setminus \{\boldsymbol{x}_0\}$.

If in addition we have

3. $\dot{Q}(\boldsymbol{x}) < 0$ for $\boldsymbol{x} \in V \smallsetminus \{\boldsymbol{x}_0\}$.

then Q is called a *strict Lyapunov function* at \boldsymbol{x}_0 for \boldsymbol{v} .

1.2.2. If Q is a strict Lyapunov function at x_0 then x_0 is the only equilibrium point of v in the domain V of Q. Indeed, if $x \in V \setminus \{x_0\}$, then by definition of a strict Lyapunov function, $\langle \nabla Q(x), v(x) \rangle < 0$, whence $v(x) \neq 0$.

If the vector field \boldsymbol{v} and the equilibrium point \boldsymbol{x}_0 are understood, we often shorten the phrases "Lyapunov function at \boldsymbol{x}_0 for \boldsymbol{v} " and "strict Lyapunov function at \boldsymbol{x}_0 for \boldsymbol{v} " to "Lyapunov function" and "strict Lyapunov function" respectively.

The proof of the following theorem follows the one given in [C, Theorem 1.55, p.29].

Theorem 1.2.3. Let \mathbf{x}_0 be an equilibrium point for (Δ) . If we have a Lyapunov function Q at \mathbf{x}_0 for \mathbf{v} . Then \mathbf{x}_0 is a stable equilibrium point. If Q is a strict Lyapunov function, then \mathbf{x}_0 is an asymptotically stable equilibrium point.

Proof. Let $Q: V \to \mathbf{R}$ be a Lyapunov function at \mathbf{x}_0 . Suppose $\varepsilon > 0$ is given. We have to find $\delta > 0$ such that $g^t \mathbf{x} \in B(\mathbf{x}_0, \varepsilon)$ for all $t \in [0, \infty] \cap J(\mathbf{x})$ whenever $\mathbf{x} \in B(\mathbf{x}_0, \delta) \cap U$. Without loss of generality, we may assume $\overline{B}(\mathbf{x}_0, \varepsilon) \subset V$. Let $S = S(\mathbf{x}_0, \varepsilon)$ be the set of points \mathbf{y} in \mathbf{R}^n such that $\|\mathbf{y} - \mathbf{x}_0\| = \varepsilon$. Then $S \subset V$. Let m be the infimum of Q on S. Since Q is continuous and $Q(\mathbf{x}_0) = 0$, there exists $\delta > 0$ such that $B(\mathbf{x}_0, \delta) \subset V$, and $Q(\mathbf{x}) < m/2$ for all $\mathbf{x} \in B(\mathbf{x}_0, \delta)$. Let $\mathbf{x} \in B(\mathbf{x}_0, \delta)$. Set $J_{\geq 0} = [0, \infty) \cap J(\mathbf{x})$. Since $\dot{Q}(\mathbf{x}) \leq 0$ for $\mathbf{x} \in V \setminus \{\mathbf{x}_0\}$, we see easily that $Q(g^t \mathbf{x})$ is a non-increasing function of t in $J_{\geq 0}$. It follows that $g^t \mathbf{x} \in B(\mathbf{x}_0, \varepsilon)$ for all $t \in J_{\geq 0}$. By definition of stability, \mathbf{x}_0 is a stable equilibrium point. In particular, $J_{\geq 0} = [0, \infty)$. It is worth pointing out, by setting t = 0, that $\delta < \varepsilon$.

Now suppose Q is a strict Lyapunov function. We wish to prove that there is an open ball B in U, centred at \mathbf{x}_0 , such that $\lim_{t\to\infty} g^t \mathbf{x} = \mathbf{x}_0$ for all $\mathbf{x} \in B$. Let B_1 be an open ball in \mathbf{R}^n centred at \mathbf{x}_0 , with $\overline{B}_1 \subset V$. Since \mathbf{x}_0 is a stable equilibrium point, there exists an open ball B centred at \mathbf{x}_0 such that $B \subset \overline{B}_1$ and such that for every $\mathbf{x} \in B$, $[0, \infty) \subset J(\mathbf{x})$ and $g^t \mathbf{x} \in B_1$ for $t \in [0, \in \infty)$. In fact, by the proof above, if S_1 is the sphere centred at \mathbf{x}_0 which is the boundary of B_1 , then we pick B such that for $]bdy \in B$, $Q(\mathbf{y})$ is less than half the infimum of Q on S_1 . Let $\mathbf{x} \in B$. If $\mathbf{x} = \mathbf{x}_0$, then clearly $\lim_{t\to\infty} g^t \mathbf{x} = \mathbf{x}_0$. So assume $\mathbf{x} \neq \mathbf{x}_0$. Since \dot{Q} is negative on $B \setminus {\mathbf{x}_0}$, we have $Q(g^t \mathbf{x})$ is a decreasing function of $t \ge 0$ as $t \uparrow \infty$. Let

$$\beta := \inf_{t \in [0,\infty)} Q(g^t \boldsymbol{x}).$$

By definition of infimum, and since $Q(g^t \boldsymbol{x})$ is decreasing, there is a sequence of time points

$$0 = t_0 < t_1 < t_2 < \dots < t_k < \dots \uparrow \infty$$

such that

$$\lim_{t \to \infty} Q(g^{t_k} \boldsymbol{x}) = \beta.$$

Since \overline{B}_1 is compact, there is a subsequence of $\{g^{t_k} \boldsymbol{x}\}$ which is convergent, and by replacing $\{g^{t_k} \boldsymbol{x}\}$ by this subsequence if necessary, we may assume $\{g^{t_k} \boldsymbol{x}\}$ is convergent. Let

$$oldsymbol{x}^* = \lim_{k o \infty} g^{t_k} oldsymbol{x}$$

Since $Q(\boldsymbol{x}^*) < Q(\boldsymbol{x})$ (we are using the fact that \dot{Q} is negative off the point \boldsymbol{x}_0), it follows that $Q(\boldsymbol{x}^*) < \frac{1}{2} \inf_{\boldsymbol{y} \in S_1} Q(\boldsymbol{y})$, whence $g^t \boldsymbol{x}^*$ is defined for all $t \in [0, \infty)$. By the continuity of g^1 , we see that

$$g^1 \boldsymbol{x}^* = \lim_{k \to \infty} g^1 g^{t_k} \boldsymbol{x} = \lim_{k \to \infty} g^{t_k+1} \boldsymbol{x}.$$

Further, $Q(g^{t_k+1}\boldsymbol{x}) < Q(g^{t_k}\boldsymbol{x})$ for all $k \ge 0$, since $\dot{Q} < 0$ on $V \setminus \{\boldsymbol{x}_0\}$. One taking limits we get

$$Q(g^1 \boldsymbol{x}^*) \le Q(\boldsymbol{x}^*).$$

On the other hand, by definition of limits, given $\eta > 0$, there exists $K \ge 0$ such that $Q(g^1 \boldsymbol{x}^*) < Q(g^{t_k+1} \boldsymbol{x}) < Q(g^1 \boldsymbol{x}^*) + \eta$ for all $k \ge K$. Pick $l \ge 1$ such that $t_l > t_K + 1$. Then we have $Q(g^1 \boldsymbol{x}^*) \le Q(\boldsymbol{x}^*) < Q(g^{t_l} \boldsymbol{x}) < Q(g^{t_k+1} \boldsymbol{x}) < Q(g^1 \boldsymbol{x}^*) + \eta$, giving

$$Q(g^1 \boldsymbol{x}^*) \leq Q(\boldsymbol{x}^*) < Q(g^1 \boldsymbol{x}^*) + \eta$$

for every $\eta > 0$. It follows that $Q(g^1 \boldsymbol{x}^*) = Q(\boldsymbol{x}^*)$. Once again, using the fact that $\dot{Q}(\boldsymbol{y}) < 0$ for all $\boldsymbol{y} \in V \setminus \{\boldsymbol{x}_0\}$, we see that this can only happen if $\boldsymbol{x}^* = \boldsymbol{x}_0$. Thus

$$\lim_{k\to\infty}g^{t_k}\boldsymbol{x}=\boldsymbol{x}_0.$$

Now suppose $\varepsilon > 0$ is given. Suppose ε is small enough that $B(\boldsymbol{x}_0, \varepsilon) \subset B$. Let

$$\gamma = \inf_{oldsymbol{y} \in S(oldsymbol{x}_0, \, arepsilon)} Q(oldsymbol{y}).$$

By the continuity of Q, we can find $\delta > 0$ such that $Q(\boldsymbol{y}) < \frac{1}{2}\gamma$ for all $\boldsymbol{y} \in B(\boldsymbol{x}_0, \delta)$. By a now familiar argument,

$$g^t \boldsymbol{y} \in B(\boldsymbol{x}_0, \varepsilon), \quad t \ge 0$$

Now there exists $K \ge 0$ such that $||g^{t_k} \boldsymbol{x} - \boldsymbol{x}_0|| < \delta$ for $k \ge K$. Thus $g^{t_k} \boldsymbol{x} \in B(\boldsymbol{x}_0, \delta)$ for all $k \ge K$. Setting $\boldsymbol{y} = g^{t_K} \boldsymbol{x}$ in the above displayed relation, we see that $g^{t+t_K} \boldsymbol{x} \in B(\boldsymbol{x}_0, \varepsilon)$ for all $t \ge 0$. This is the same as saying

$$g^t \boldsymbol{x} \in B(\boldsymbol{x}_0, \varepsilon), \quad t \geq t_K.$$

It follows that $\lim_{t\to\infty} g^t \boldsymbol{x} = \boldsymbol{x}_0$.

References

- [A1] V. I. Arnold, Ordinary Differential Equations, translated by Richard A. Silverman, MIT Press (also Prentice-Hall, India), Cambridge, MA, U.S.A., 1973.
- [A2] V. I. Arnold, Ordinary Differential Equations, Third Edition, translated by Roger Cooke, Universitext, Springer-Verlag, Berlin, 2006.
- [B] J. Burke, Notes of course given at University of Washington, http://sites.math. washington.edu/~burke/crs/555/555_notes/continuity.pdf.
- [C] C. Chicone, Ordinary Differential Equations with Applications, Springer, 2006.
- [CL] E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955.
- [G] C.P. Grant, Theory of Ordinary Differential Equations. https://www.math.utah.edu/ ~treiberg/GrantTodes2008.pdf, Brigham Young University.