
LECTURES 26 AND 27

Dates of the Lectures: April 12 and April 19, 2021

As always, K ∈ {R, C}.
The symbol � is for flagging a cautionary comment or a tricky argument. It

occurs in the margins and is Knuth’s version of Bourbaki’s “dangerous bend sym-
bol”.

An n-tuple (x1, . . . , xn) of symbols (xi not necessarily real or complex numbers)
will also be written as a column vector when convenient. Thus

(x1, . . . , xn) =

x1...
xn

 .
A map f from a set S to a product set T1 × · · · × Tn will often be written as

an n-tuple f = (f1, . . . , fn), with fi a map from S to Ti, and hence, by the above
convention, as a column vector

f =

f1...
fn

 .
(See Remark 2.2.2 of Lecture 5 of ANA2.)

The default norm on Euclidean spaces of the form Rn is the Euclidean norm ‖ ‖2
and we will simply denote it as ‖ ‖. The space of K-linear transformations from
Kn to Km will be denoted HomR(Kn,Km) and will be identified in the standard
way with the space of m × n matrices Mm,n(K) and the operator norm1 on both
spaces will be denoted ‖ ‖◦. If m = n, we write Mn(R) for Mm,n(R), and L(Kn)
for HomK(Kn, Kn).

Note that (x1, . . . , xn) 6= [x1 . . . xn]. Each side is the transpose of the other.�

1. Lyapunov’s direct method

Let U be open in Rn and v : U → Rn a C 1 vector field on U . Let as (∆) be the
differential equation

(∆)
.
x = v(x).

We use the terms equilibrium point of (∆) and equilibrium point of v interchange-
ably. Both mean a singular point of v, i.e. a point on which v vanishes. Let
Ω = R×U , and for (τ, a) ∈ Ω, let (∆)(τ,a), ϕ(τ,a), J(τ, a) have their usual mean-
ing. We make one simplification in our notation soup: when τ = 0 we suppress τ .
Thus J(a) = J(0, a), ϕa = ϕ(0,a) etc. We point out that since (∆) is autonomous,
the initial time is of little importance.

Finally, we set

(1) gtx = ϕx(t) (x ∈ U, t ∈ J(x)).

1See §§2.1 of Lecture 5 of ANA2.
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An equilibrium point of the flow {gt} is an equilibrium point of (∆). Technically,
from the dynamical systems point of view, the notion of an equilibrium of stationary
point applies to a flow {gt}. This term when applied to (∆) or v is a small abuse
of terminology. However, (∆) or v contain all the information of the flow {gt} and
conversely, the flow contains all the information of (∆) as well as of v.

1.1. Interval of existence near a stable equilibrium point. Recall that an
equilibrium position x0 of (∆) is said to be stable (in Lyapunov’s sense) if given
ε > 0, there exists δ > 0 such that B(x0, δ) ⊂ U and for x ∈ B(x0, δ), the solution
ϕx of (∆) satisfies the inequality ‖ϕx(t)− x0‖ < ε for all t ∈ [0, ∞) ∩ J(x).

Setting t = 0 we see that δ < ε.
Recall further that an equilibrium point x0 is said to be asymptotically sta-

ble in the sense of Lyapunov if there exists δ > 0 such that B(x0, δ) ⊂ U and
limt→∞ gtx = x0 for all x ∈ B(x0, δ). The reader may wonder how one can let
t approach ∞, since J(x) may not contain [0, ∞). The following lemma answers
that question.

Lemma 1.1.1. Suppose x0 is a stable equilibrium point of the dynamical system
represented by the differential equation (∆) and suppose 0 < δ < ε are real numbers
such that B(x0, ε) ⊂ U and such that gtx ∈ B(x0, ε) for all t ∈ [0, ∞) ∩ J(x)
whenever x ∈ B(x0, δ). Then [0, ∞) ∩ J(x) = [0, ∞).

Proof. Let J(x) = (ω−, ω+). Let T be a positive time point. Then KT = [0, T ]×
B(x0, ε) is a compact subset of Ω. We know then that (t, gtx) must leave KT as
t ↑ ω+. Moreover gtx ∈ B(x0, ε) for t ∈ [0, T ] ∩ J(x). It follows that (t, x) must
hit {T}×B(x0, ε), whence T ∈ J(x). Since T > 0 was arbitrary, we are done. �

1.2. Lyapunov functions. Fix an equilibrium point x0 of (∆). Let V be an open
neighbourhood of x0 in U and Q : V → R a continuous map such that Q is C 1 on

V r {x0}. In this case, define
.
Q : V → R by the formula

(1.2.1)
.
Q(x) =

{
〈∇Q(x), v(x)〉, if x 6= x0

0, if x = x0.

Let Q be as above. It is said to be a Lyapunov function for v (or (∆), or the
flow {gt}) at x0 if in addition to the above conditions, it also satisfies

1. Q(x) > 0 for x ∈ V r {x0}, Q(x0) = 0.

2.
.
Q(x) ≤ 0 for x ∈ V r {x0}.

If in addition we have

3.
.
Q(x) < 0 for x ∈ V r {x0}.

then Q is called a strict Lyapunov function at x0 for v.

1.2.2. If Q is a strict Lyapunov function at x0 then x0 is the only equilibrium
point of v in the domain V of Q. Indeed, if x ∈ V r {x0}, then by definition of a
strict Lyapunov function, 〈∇Q(x), v(x)〉 < 0, whence v(x) 6= 0.

If the vector field v and the equilibrium point x0 are understood, we often shorten
the phrases “Lyapunov function at x0 for v” and “strict Lyapunov function at x0

for v” to “Lyapunov function” and “strict Lyapunov function” respectively.
The proof of the following theorem follows the one given in [C, Theorem 1.55,

p.29].
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Theorem 1.2.3. Let x0 be an equilibrium point for (∆). If we have a Lyapunov
function Q at x0 for v. Then x0 is a stable equilibrium point. If Q is a strict
Lyapunov function, then x0 is an asymptotically stable equilibrium point.

Proof. Let Q : V → R be a Lyapunov function at x0. Suppose ε > 0 is given. We
have to find δ > 0 such that gtx ∈ B(x0, ε) for all t ∈ [0, ∞] ∩ J(x) whenever
x ∈ B(x0 δ) ∩ U . Without loss of generality, we may assume B(x0, ε) ⊂ V . Let
S = S(x0, ε) be the set of points y in Rn such that ‖y − x0‖ = ε. Then S ⊂ V .
Let m be the infimum of Q on S. Since Q is continuous and Q(x0) = 0, there
exists δ > 0 such that B(x0, δ) ⊂ V , and Q(x) < m/2 for all x ∈ B(x0, δ). Let

x ∈ B(x0, δ). Set J≥0 = [0, ∞) ∩ J(x). Since
.
Q(x) ≤ 0 for x ∈ V r {x0},

we see easily that Q(gtx) is a non-increasing function of t in J≥0. It follows that
Q(gtx) ≤ m/2 for all t ∈ J≥0. Thus gtx /∈ S for any t ∈ J≥0. It follows that
gtx ∈ B(x0, ε) for all t ∈ J≥0. By definition of stability, x0 is a stable equilibrium
point. In particular, J≥0 = [0, ∞). It is worth pointing out, by setting t = 0, that
δ < ε.

Now suppose Q is a strict Lyapunov function. We wish to prove that there is an
open ball B in U , centred at x0, such that limt→∞ gtx = x0 for all x ∈ B. Let B1

be an open ball in Rn centred at x0, with B1 ⊂ V . Since x0 is a stable equilibrium
point, there exists an open ball B centred at x0 such that B ⊂ B1 and such that
for every x ∈ B, [0, ∞) ⊂ J(x) and gtx ∈ B1 for t ∈ [0,∈ ∞). In fact, by the
proof above, if S1 is the sphere centred at x0 which is the boundary of B1, then we
pick B such that for ]bdy ∈ B, Q(y) is less than half the infimum of Q on S1. Let

x ∈ B. If x = x0, then clearly limt→∞ gtx = x0. So assume x 6= x0. Since
.
Q is

negative on B r {x0}, we have Q(gtx) is a decreasing function of t ≥ 0 as t ↑ ∞.
Let

β := inf
t∈[0,∞)

Q(gtx).
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By definition of infimum, and since Q(gtx) is decreasing, there is a sequence of time
points

0 = t0 < t1 < t2 < · · · < tk < . . . ↑ ∞

such that

lim
t→∞

Q(gtkx) = β.

Since B1 is compact, there is a subsequence of {gtkx} which is convergent, and
by replacing {gtkx} by this subsequence if necessary, we may assume {gtkx} is
convergent. Let

x∗ = lim
k→∞

gtkx.

Since Q(x∗) < Q(x) (we are using the fact that
.
Q is negative off the point x0), it

follows that Q(x∗) < 1
2 infy∈S1 Q(y), whence gtx∗ is defined for all t ∈ [0, ∞). By

the continuity of g1, we see that

g1x∗ = lim
k→∞

g1gtkx = lim
k→∞

gtk+1x.

Further, Q(gtk+1x) < Q(gtkx) for all k ≥ 0, since
.
Q < 0 on V r {x0}. One taking

limits we get

Q(g1x∗) ≤ Q(x∗).

On the other hand, by definition of limits, given η > 0, there exists K ≥ 0 such that
Q(g1x∗) < Q(gtk+1x) < Q(g1x∗)+η for all k ≥ K. Pick l ≥ 1 such that tl > tK+1.
Then we have Q(g1x∗) ≤ Q(x∗) < Q(gtlx) < Q(gtK+1x) < Q(g1x∗) + η, giving

Q(g1x∗) ≤ Q(x∗) < Q(g1x∗) + η

for every η > 0. It follows that Q(g1x∗) = Q(x∗). Once again, using the fact that.
Q(y) < 0 for all y ∈ V r {x0}, we see that this can only happen if x∗ = x0. Thus

lim
k→∞

gtkx = x0.

Now suppose ε > 0 is given. Suppose ε is small enough that B(x0, ε) ⊂ B. Let

γ = inf
y∈S(x0, ε)

Q(y).

By the continuity of Q, we can find δ > 0 such that Q(y) < 1
2γ for all y ∈ B(x0, δ).

By a now familiar argument,

gty ∈ B(x0, ε), t ≥ 0.

Now there exists K ≥ 0 such that ‖gtkx− x0‖ < δ for k ≥ K. Thus gtkx ∈
B(x0, δ) for all k ≥ K. Setting y = gtKx in the above displayed relation, we see
that gt+tKx ∈ B(x0, ε) for all t ≥ 0. This is the same as saying

gtx ∈ B(x0, ε), t ≥ tK .

It follows that limt→∞ gtx = x0. �
4



References

[A1] V. I. Arnold, Ordinary Differential Equations, translated by Richard A. Silverman, MIT
Press (also Prentice-Hall, India), Cambridge,MA, U.S.A., 1973.

[A2] V. I. Arnold, Ordinary Differential Equations, Third Edition, translated by Roger Cooke,

Universitext, Springer-Verlag, Berlin, 2006.
[B] J. Burke, Notes of course given at University of Washington, http://sites.math.

washington.edu/~burke/crs/555/555_notes/continuity.pdf.

[C] C. Chicone, Ordinary Differential Equations with Applications, Springer, 2006.
[CL] E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-

Hill, New York, 1955.
[G] C.P. Grant, Theory of Ordinary Differential Equations. https://www.math.utah.edu/

~treiberg/GrantTodes2008.pdf, Brigham Young University.

5

http://sites.math.washington.edu/~burke/crs/555/555_notes/continuity.pdf
http://sites.math.washington.edu/~burke/crs/555/555_notes/continuity.pdf
https://www.math.utah.edu/~treiberg/GrantTodes2008.pdf
https://www.math.utah.edu/~treiberg/GrantTodes2008.pdf

	1. Lyapunov's direct method
	1.1. Interval of existence near a stable equilibrium point
	1.2. Lyapunov functions

	References

