LECTURE 24

Dates of the Lectures: April 5, 2021
As always, $\mathbf{K} \in\{\mathbf{R}, \mathbf{C}\}$.
The symbol © is for flagging a cautionary comment or a tricky argument. It occurs in the margins and is Knuth's version of Bourbaki's "dangerous bend symbol".

An n-tuple $\left(x_{1}, \ldots, x_{n}\right)$ of symbols (x_{i} not necessarily real or complex numbers) will also be written as a column vector when convenient. Thus

$$
\left(x_{1}, \ldots, x_{n}\right)=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

A map \boldsymbol{f} from a set S to a product set $T_{1} \times \cdots \times T_{n}$ will often be written as an n-tuple $\boldsymbol{f}=\left(f_{1}, \ldots, f_{n}\right)$, with f_{i} a map from S to T_{i}, and hence, by the above convention, as a column vector

$$
\boldsymbol{f}=\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right] .
$$

(See Remark 2.2.2 of Lecture 5 of ANA2.)
The default norm on Euclidean spaces of the form \mathbf{R}^{n} is the Euclidean norm $\left\|\|_{2}\right.$ and we will simply denote it as $\|\|$. The space of \mathbf{K}-linear transformations from \mathbf{K}^{n} to \mathbf{K}^{m} will be denoted $\operatorname{Hom}_{\mathbf{R}}\left(\mathbf{K}^{n}, \mathbf{K}^{m}\right)$ and will be identified in the standard way with the space of $m \times n$ matrices $M_{m, n}(\mathbf{K})$ and the operator norm ${ }^{1}$ on both spaces will be denoted $\left\|\|_{0}\right.$. If $m=n$, we write $M_{n}(\mathbf{R})$ for $M_{m, n}(\mathbf{R})$, and $L\left(\mathbf{K}^{n}\right)$ for $\operatorname{Hom}_{\mathbf{K}}\left(\mathbf{K}^{n}, \mathbf{K}^{n}\right)$.

Note that $\left(x_{1}, \ldots, x_{n}\right) \neq\left[x_{1} \ldots x_{n}\right]$. Each side is the transpose of the other.

1. Rectification

Throughout this lecture U is an open set of $\mathbf{R}^{n}, \boldsymbol{v}: U \rightarrow \mathbf{R}^{n}$ a \mathscr{C}^{1} vector field.
1.1. The rectification theorem. Let $\boldsymbol{a}_{\mathbf{0}} \in U$ be a regular point of \boldsymbol{v}, i.e. $\boldsymbol{v}\left(\boldsymbol{a}_{\mathbf{0}}\right) \neq$ 0 . Our goal is to find an open neighbourhood V in U of $\boldsymbol{a}_{\mathbf{0}}$, an open neighbourhood W of $\mathbf{0} \in \mathbf{R}^{n}$, and a diffeomorphism $\boldsymbol{F}: V \rightarrow W$ such that $\boldsymbol{F}\left(\boldsymbol{a}_{\mathbf{0}}\right)=\mathbf{0}$ and $\boldsymbol{F}_{*}(\boldsymbol{v})=\mathbf{e}_{1}$. Recall from (3.1.1) and 3.1.3 of Lectures 17 and 18 that if we have a diffeomorphism $\boldsymbol{F}: V \rightarrow W$ where V is open in U, then the push-forward of \boldsymbol{v} to W is the vector field $\boldsymbol{F}_{*} \boldsymbol{v}$ on W given by

$$
\begin{equation*}
\left(\boldsymbol{F}_{*} \boldsymbol{v}\right)(\boldsymbol{y})=\boldsymbol{F}^{\prime}(\boldsymbol{G}(\boldsymbol{y})) \boldsymbol{v}(\boldsymbol{G}(\boldsymbol{y})) \quad(\boldsymbol{y} \in W) \tag{1.1.1}
\end{equation*}
$$

where $\boldsymbol{G}=\boldsymbol{F}^{-1}$.
It is clear, by translating $\boldsymbol{a}_{\mathbf{0}}$ to the origin if necessary, that we may assume $\boldsymbol{a}_{\mathbf{0}}=\mathbf{0}$. Since $\boldsymbol{v}(\mathbf{0}) \neq \mathbf{0}$, at least one component of $\boldsymbol{v}(\mathbf{0})=\left(v_{1}(\mathbf{0}), \ldots, v_{n}(\mathbf{0})\right)$ is

[^0]non-zero, and without loss of generality, we assume $v_{1}(\mathbf{0}) \neq 0$. In other words $\boldsymbol{v}(\mathbf{0})$ is not in the span of $\mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$.

For $a \in U$ let φ_{a} be the solution of the IVP

$$
\dot{\boldsymbol{x}}=\boldsymbol{v}(\boldsymbol{x}), \quad \boldsymbol{x}(0)=\boldsymbol{a}
$$

Let $I=[-c, c]$ be an interval of existence of φ_{0}. By Theorem 3.1.6 of Lecture 20 we can find an open neighbourhood W^{\prime} in U of $\mathbf{0}$ such that I is an interval of existence for φ_{a} for all $\boldsymbol{a} \in W^{\prime}$ (in loc.cit., W^{\prime} is a ball of radius δ around $\mathbf{0}$). Let

$$
W=\left\{\left(t, y_{2}, \ldots, y_{n}\right) \in \mathbf{R}^{n} \mid t \in(-c, c) \text { and }\left(0, y_{2}, \ldots, y_{n}\right) \in W^{\prime}\right\}
$$

It is clear that W is open in \mathbf{R}^{n}, for the set of points $\left(y_{2}, \ldots, y_{n}\right) \in \mathbf{R}^{n-1}$ such that $\left(0, y_{2}, \ldots, y_{n}\right) \in W^{\prime}$ is open in \mathbf{R}^{n-1} and $(-c, c)$ is open in \mathbf{R}. Since the map $\boldsymbol{H}: I \times W^{\prime} \rightarrow U$ given by $\boldsymbol{H}(t, \boldsymbol{y})=\boldsymbol{\varphi}_{\boldsymbol{y}}(t)$ is \mathscr{C}^{1} (by Theorem 3.2.3 of Lectures 21 and 22), we see that the $\operatorname{map} \boldsymbol{G}: W \rightarrow U$ given by

$$
\boldsymbol{G}\left(t, y_{2}, \ldots, y_{n}\right)=\boldsymbol{\varphi}_{\left(0, y_{2}, \ldots, y_{n}\right)}(t), \quad\left(t, y_{2}, \ldots, y_{n}\right) \in W
$$

is \mathscr{C}^{1}. Note that by the definition of $\boldsymbol{\varphi}_{\left(0, y_{2}, \ldots, y_{n}\right)}$ we have

$$
\begin{equation*}
\left.\frac{\partial \boldsymbol{G}}{\partial t}\right|_{\left(t, y_{2}, \ldots, y_{n}\right)}=\boldsymbol{v}\left(\boldsymbol{G}\left(t, y_{2}, \ldots, y_{n}\right)\right) \tag{1.1.2}
\end{equation*}
$$

Moreover, $\boldsymbol{G}\left(0, y_{2}, \ldots, y_{n}\right)=\left(0, y_{2}, \ldots, y_{n}\right)$. This yields

$$
\boldsymbol{G}(\mathbf{0})=\mathbf{0}, \quad \text { and }\left.\quad \frac{\partial \boldsymbol{G}}{\partial y_{i}}\right|_{\left(0, y_{2}, \ldots, y_{n}\right)}=\mathbf{e}_{i}, i=2, \ldots, n
$$

Thus

$$
J \boldsymbol{G}(\mathbf{0})=\left[\begin{array}{llll}
\boldsymbol{v}(\mathbf{0}) & \mathbf{e}_{2} & \ldots & \mathbf{e}_{n}
\end{array}\right] .
$$

By our choice of co-ordinates on \mathbf{R}^{n}, we know that $\boldsymbol{v}(\mathbf{0})$ is not in the linear span of $\mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$, whence the above formula shows that $J \boldsymbol{G}(\mathbf{0})$ is non-singular. By the inverse function theorem we see that \boldsymbol{G} is a diffeomorphism on an open neighbourhood in W of $\mathbf{0}$ onto an open neighbourhood of $\mathbf{0}$ of $U \subset \mathbf{R}^{n}$. By shrinking W around $\mathbf{0}$ if necessary, we assume \boldsymbol{G} is a diffeomorphism on W and write $V=\boldsymbol{G}(W)$. Then V is an open neighbourhood of $\mathbf{0}$ in U and we have a diffeomorphism $\boldsymbol{G}: W \xrightarrow{\sim} V$. Let $\boldsymbol{F}=\boldsymbol{G}^{-1}$. By exchanging the roles of \boldsymbol{G} and \boldsymbol{F} in formula (1.1.1) we see that

$$
\left(\boldsymbol{G}_{*} \mathbf{e}_{1}\right)(\boldsymbol{x})=\boldsymbol{G}^{\prime}(\boldsymbol{F}(\boldsymbol{x})) \mathbf{e}_{1}(\boldsymbol{x})=\boldsymbol{G}^{\prime}(\boldsymbol{F}(\boldsymbol{x})) \mathbf{e}_{1}=(J \boldsymbol{G}(\boldsymbol{F}(\boldsymbol{x}))) \mathbf{e}_{1} .
$$

The identity (1.1.2) shows that the first column of $J \boldsymbol{G}(\boldsymbol{F}(\boldsymbol{x}))$ is $\boldsymbol{v}(\boldsymbol{G}(\boldsymbol{F}(\boldsymbol{x})))=$ $\boldsymbol{v}(\boldsymbol{x})$. In other words, $\left(\boldsymbol{G}_{*} \mathbf{e}_{1}\right)(\boldsymbol{x})=\boldsymbol{v}(\boldsymbol{x})$. It follows that

$$
\boldsymbol{F}_{*} \boldsymbol{v}=\mathbf{e}_{1} .
$$

We have therefore proved:
Theorem 1.1.3. (The Rectification Theorem) Let U be an open subset of \mathbf{R}^{n}, $\boldsymbol{v}: U \rightarrow \mathbf{R}^{n}$ a \mathscr{C}^{1} vector field on U, and $\boldsymbol{a}_{\mathbf{0}} \in U$ a regular point for \boldsymbol{v}, i.e. $\boldsymbol{v}\left(\boldsymbol{a}_{\mathbf{0}}\right) \neq \mathbf{0}$. Then there are open sets V and W in \mathbf{R}^{n} with $\boldsymbol{a}_{\mathbf{0}} \in V \subset U$, and $\mathbf{0} \in W$, and a diffeomorphism $\boldsymbol{F}: V \xrightarrow{\sim} W$ such that

$$
\boldsymbol{F}\left(\boldsymbol{a}_{\mathbf{0}}\right)=\mathbf{0}, \quad \text { and } \quad \boldsymbol{F}_{*} \boldsymbol{v}=\mathbf{e}_{1}
$$

1.1.4. Here is another way of seeing $\boldsymbol{G}_{*} \mathbf{e}_{1}=\boldsymbol{v}$. Consider the smooth path $t \mapsto$ $\boldsymbol{\psi}^{\boldsymbol{y}}(t)$ where $\boldsymbol{\psi}^{\boldsymbol{y}}(t)=t \mathbf{e}_{1}+y_{2} \mathbf{e}_{2}+\cdots+y_{n} \mathbf{e}_{n}$ for a fixed point $\boldsymbol{y}=\left(0, y_{2}, \ldots, y_{n-1}\right) \in$ \mathbf{R}^{n}. Its velocity vector at every time point is \mathbf{e}_{1}. If we restrict t to $(-c, c)$ and $\sum_{i=2}^{n} y_{i} \mathbf{e}_{i}$ to $W^{\prime} \cap \operatorname{span}\left\{\mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$, the image of our smooth path $t \mapsto \boldsymbol{\psi}^{\boldsymbol{y}}(t)$ under \boldsymbol{G} is the \mathscr{C}^{1} path $t \mapsto \boldsymbol{\varphi}_{\left(0, y_{2}, \ldots, y_{n}\right)}(t)$, whose velocity vectors are $\boldsymbol{v}\left(\boldsymbol{\varphi}_{\left(0, y_{2}, \ldots, y_{n}\right)}(t)\right)$. Since we can pass paths of the type $t \mapsto \boldsymbol{\psi}^{\boldsymbol{y}}(t)$ through every point in \mathbf{R}^{n} and hence through every point of W, it is immediate that $\boldsymbol{G}_{*} \mathbf{e}_{1}=\boldsymbol{v}$.

References

[A1] V. I. Arnold, Ordinary Differential Equations, translated by Richard A. Silverman, MIT Press (also Prentice-Hall, India), Cambridge,MA, U.S.A., 1973.
[A2] V. I. Arnold, Ordinary Differential Equations, Third Edition, translated by Roger Cooke, Universitext, Springer-Verlag, Berlin, 2006.
[CL] E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGrawHill, New York, 1955.

[^0]: ${ }^{1}$ See $\S \S 2.1$ of Lecture 5 of ANA2.

