
LECTURE 24

Dates of the Lectures: April 5, 2021

As always, K ∈ {R, C}.
The symbol � is for flagging a cautionary comment or a tricky argument. It

occurs in the margins and is Knuth’s version of Bourbaki’s “dangerous bend sym-
bol”.

An n-tuple (x1, . . . , xn) of symbols (xi not necessarily real or complex numbers)
will also be written as a column vector when convenient. Thus

(x1, . . . , xn) =

x1...
xn

 .
A map f from a set S to a product set T1 × · · · × Tn will often be written as

an n-tuple f = (f1, . . . , fn), with fi a map from S to Ti, and hence, by the above
convention, as a column vector

f =

f1...
fn

 .
(See Remark 2.2.2 of Lecture 5 of ANA2.)

The default norm on Euclidean spaces of the form Rn is the Euclidean norm ‖ ‖2
and we will simply denote it as ‖ ‖. The space of K-linear transformations from
Kn to Km will be denoted HomR(Kn,Km) and will be identified in the standard
way with the space of m × n matrices Mm,n(K) and the operator norm1 on both
spaces will be denoted ‖ ‖◦. If m = n, we write Mn(R) for Mm,n(R), and L(Kn)
for HomK(Kn, Kn).

Note that (x1, . . . , xn) 6= [x1 . . . xn]. Each side is the transpose of the other.�

1. Rectification

Throughout this lecture U is an open set of Rn, v : U → Rn a C 1 vector field.

1.1. The rectification theorem. Let a0 ∈ U be a regular point of v, i.e. v(a0) 6=
0. Our goal is to find an open neighbourhood V in U of a0, an open neighbourhood
W of 0 ∈ Rn, and a diffeomorphism F : V → W such that F (a0) = 0 and
F ∗(v) = e1. Recall from (3.1.1) and 3.1.3 of Lectures 17 and 18 that if we have a
diffeomorphism F : V → W where V is open in U , then the push-forward of v to
W is the vector field F ∗v on W given by

(1.1.1) (F ∗v)(y) = F ′(G(y))v(G(y)) (y ∈W ),

where G = F−1.
It is clear, by translating a0 to the origin if necessary, that we may assume

a0 = 0. Since v(0) 6= 0, at least one component of v(0) = (v1(0), . . . , vn(0)) is

1See §§2.1 of Lecture 5 of ANA2.
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non-zero, and without loss of generality, we assume v1(0) 6= 0. In other words v(0)
is not in the span of e2, . . . , en.

For a ∈ U let ϕa be the solution of the IVP

.
x = v(x), x(0) = a.

Let I = [−c, c] be an interval of existence of ϕ0. By Theorem 3.1.6 of Lecture 20 we
can find an open neighbourhood W ′ in U of 0 such that I is an interval of existence
for ϕa for all a ∈W ′ (in loc.cit., W ′ is a ball of radius δ around 0). Let

W = {(t, y2, . . . , yn) ∈ Rn | t ∈ (−c, c) and (0, y2, . . . , yn) ∈W ′}.

It is clear that W is open in Rn, for the set of points (y2, . . . , yn) ∈ Rn−1 such
that (0, y2, . . . , yn) ∈W ′ is open in Rn−1 and (−c, c) is open in R. Since the map
H : I ×W ′ → U given by H(t, y) = ϕy(t) is C 1 (by Theorem 3.2.3 of Lectures 21
and 22), we see that the map G : W → U given by

G(t, y2, . . . , yn) = ϕ(0, y2, ..., yn)(t), (t, y2, . . . , yn) ∈W

is C 1. Note that by the definition of ϕ(0, y2, ..., yn) we have

(1.1.2)
∂G

∂t

∣∣∣∣
(t,y2,...,yn)

= v(G(t, y2, . . . , yn)).

Moreover, G(0, y2, . . . , yn) = (0, y2, . . . , yn). This yields

G(0) = 0, and
∂G

∂yi

∣∣
(0,y2,...,yn)

= ei, i = 2, . . . , n.

Thus

JG(0) = [v(0) e2 . . . en].

By our choice of co-ordinates on Rn, we know that v(0) is not in the linear span of
e2, . . . , en, whence the above formula shows that JG(0) is non-singular. By the in-
verse function theorem we see thatG is a diffeomorphism on an open neighbourhood
in W of 0 onto an open neighbourhood of 0 of U ⊂ Rn. By shrinking W around 0
if necessary, we assume G is a diffeomorphism on W and write V = G(W ). Then V
is an open neighbourhood of 0 in U and we have a diffeomorphism G : W −→∼ V .
Let F = G−1. By exchanging the roles of G and F in formula (1.1.1) we see that

(G∗e1)(x) = G′(F (x))e1(x) = G′(F (x))e1 = (JG(F (x)))e1.

The identity (1.1.2) shows that the first column of JG(F (x)) is v(G(F (x))) =
v(x). In other words, (G∗e1)(x) = v(x). It follows that

F ∗v = e1.

We have therefore proved:

Theorem 1.1.3. (The Rectification Theorem) Let U be an open subset of Rn,
v : U → Rn a C 1 vector field on U , and a0 ∈ U a regular point for v, i.e. v(a0) 6= 0.
Then there are open sets V and W in Rn with a0 ∈ V ⊂ U , and 0 ∈ W , and a
diffeomorphism F : V −→∼ W such that

F (a0) = 0, and F ∗v = e1.
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1.1.4. Here is another way of seeing G∗e1 = v. Consider the smooth path t 7→
ψy(t) where ψy(t) = te1+y2e2+ · · ·+ynen for a fixed point y = (0, y2, . . . , yn−1) ∈
Rn. Its velocity vector at every time point is e1. If we restrict t to (−c, c) and∑n

i=2 yiei to W ′∩span{e2, . . . , en}, the image of our smooth path t 7→ ψy(t) under
G is the C 1 path t 7→ ϕ(0,y2,...,yn)(t), whose velocity vectors are v(ϕ(0,y2,...,yn)(t)).

Since we can pass paths of the type t 7→ ψy(t) through every point in Rn and hence
through every point of W , it is immediate that G∗e1 = v.
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