LECTURE 24

Dates of the Lectures: April 5, 2021

As always, $\mathbf{K} \in {\{\mathbf{R}, \mathbf{C}\}}$.

The symbol P is for flagging a cautionary comment or a tricky argument. It occurs in the margins and is Knuth's version of Bourbaki's "dangerous bend symbol".

An *n*-tuple (x_1, \ldots, x_n) of symbols $(x_i \text{ not necessarily real or complex numbers}) will also be written as a column vector when convenient. Thus$

$$(x_1,\ldots,x_n) = \begin{bmatrix} x_1\\ \vdots\\ x_n \end{bmatrix}$$

A map f from a set S to a product set $T_1 \times \cdots \times T_n$ will often be written as an *n*-tuple $f = (f_1, \ldots, f_n)$, with f_i a map from S to T_i , and hence, by the above convention, as a column vector

$$oldsymbol{f} = egin{bmatrix} f_1 \ dots \ f_n \end{bmatrix}.$$

(See Remark 2.2.2 of Lecture 5 of ANA2.)

The default norm on Euclidean spaces of the form \mathbf{R}^n is the Euclidean norm $|| ||_2$ and we will simply denote it as || ||. The space of **K**-linear transformations from \mathbf{K}^n to \mathbf{K}^m will be denoted $\operatorname{Hom}_{\mathbf{R}}(\mathbf{K}^n, \mathbf{K}^m)$ and will be identified in the standard way with the space of $m \times n$ matrices $M_{m,n}(\mathbf{K})$ and the operator norm¹ on both spaces will be denoted $|| ||_{\circ}$. If m = n, we write $M_n(\mathbf{R})$ for $M_{m,n}(\mathbf{R})$, and $L(\mathbf{K}^n)$ for $\operatorname{Hom}_{\mathbf{K}}(\mathbf{K}^n, \mathbf{K}^n)$.

Note that $(x_1, \ldots, x_n) \neq [x_1 \ldots x_n]$. Each side is the transpose of the other.

1. Rectification

Throughout this lecture U is an open set of \mathbf{R}^n , $v \colon U \to \mathbf{R}^n$ a \mathscr{C}^1 vector field.

1.1. The rectification theorem. Let $a_0 \in U$ be a regular point of v, i.e. $v(a_0) \neq 0$. Our goal is to find an open neighbourhood V in U of a_0 , an open neighbourhood W of $\mathbf{0} \in \mathbf{R}^n$, and a diffeomorphism $F: V \to W$ such that $F(a_0) = \mathbf{0}$ and $F_*(v) = \mathbf{e}_1$. Recall from (3.1.1) and 3.1.3 of Lectures 17 and 18 that if we have a diffeomorphism $F: V \to W$ where V is open in U, then the push-forward of v to W is the vector field F_*v on W given by

(1.1.1)
$$(\boldsymbol{F}_*\boldsymbol{v})(\boldsymbol{y}) = \boldsymbol{F}'(\boldsymbol{G}(\boldsymbol{y}))\boldsymbol{v}(\boldsymbol{G}(\boldsymbol{y})) \qquad (\boldsymbol{y} \in W),$$

where $\boldsymbol{G} = \boldsymbol{F}^{-1}$.

It is clear, by translating a_0 to the origin if necessary, that we may assume $a_0 = 0$. Since $v(0) \neq 0$, at least one component of $v(0) = (v_1(0), \ldots, v_n(0))$ is

¹See §§2.1 of Lecture 5 of ANA2.

non-zero, and without loss of generality, we assume $v_1(\mathbf{0}) \neq 0$. In other words $v(\mathbf{0})$ is not in the span of $\mathbf{e}_2, \ldots, \mathbf{e}_n$.

For $a \in U$ let φ_a be the solution of the IVP

$$\dot{\boldsymbol{x}} = \boldsymbol{v}(\boldsymbol{x}), \quad \boldsymbol{x}(0) = \boldsymbol{a}.$$

Let I = [-c, c] be an interval of existence of φ_0 . By Theorem 3.1.6 of Lecture 20 we can find an open neighbourhood W' in U of **0** such that I is an interval of existence for φ_a for all $a \in W'$ (in *loc.cit.*, W' is a ball of radius δ around **0**). Let

$$W = \{(t, y_2, \dots, y_n) \in \mathbf{R}^n \mid t \in (-c, c) \text{ and } (0, y_2, \dots, y_n) \in W'\}.$$

It is clear that W is open in \mathbb{R}^n , for the set of points $(y_2, \ldots, y_n) \in \mathbb{R}^{n-1}$ such that $(0, y_2, \ldots, y_n) \in W'$ is open in \mathbb{R}^{n-1} and (-c, c) is open in \mathbb{R} . Since the map $H: I \times W' \to U$ given by $H(t, y) = \varphi_y(t)$ is \mathscr{C}^1 (by Theorem 3.2.3 of Lectures 21 and 22), we see that the map $G: W \to U$ given by

$$G(t, y_2, \ldots, y_n) = \varphi_{(0, y_2, \ldots, y_n)}(t), \qquad (t, y_2, \ldots, y_n) \in W$$

is \mathscr{C}^1 . Note that by the definition of $\varphi_{(0, y_2, \dots, y_n)}$ we have

(1.1.2)
$$\frac{\partial \boldsymbol{G}}{\partial t}\Big|_{(t,y_2,\ldots,y_n)} = \boldsymbol{v}(\boldsymbol{G}(t,\,y_2,\,\ldots,\,y_n)).$$

Moreover, $G(0, y_2, ..., y_n) = (0, y_2, ..., y_n)$. This yields

$$G(\mathbf{0}) = \mathbf{0}$$
, and $\frac{\partial G}{\partial y_i}\Big|_{(0,y_2,\dots,y_n)} = \mathbf{e}_i, i = 2,\dots,n.$

Thus

$$JG(\mathbf{0}) = [v(\mathbf{0}) \mathbf{e}_2 \ldots \mathbf{e}_n].$$

By our choice of co-ordinates on \mathbb{R}^n , we know that $v(\mathbf{0})$ is not in the linear span of $\mathbf{e}_2, \ldots, \mathbf{e}_n$, whence the above formula shows that $J\mathbf{G}(\mathbf{0})$ is non-singular. By the inverse function theorem we see that \mathbf{G} is a diffeomorphism on an open neighbourhood in W of $\mathbf{0}$ onto an open neighbourhood of $\mathbf{0}$ of $U \subset \mathbb{R}^n$. By shrinking W around $\mathbf{0}$ if necessary, we assume \mathbf{G} is a diffeomorphism on W and write $V = \mathbf{G}(W)$. Then V is an open neighbourhood of $\mathbf{0}$ in U and we have a diffeomorphism $\mathbf{G} \colon W \xrightarrow{\sim} V$. Let $\mathbf{F} = \mathbf{G}^{-1}$. By exchanging the roles of \mathbf{G} and \mathbf{F} in formula (1.1.1) we see that

$$(\boldsymbol{G}_*\boldsymbol{e}_1)(\boldsymbol{x}) = \boldsymbol{G}'(\boldsymbol{F}(\boldsymbol{x}))\boldsymbol{e}_1(\boldsymbol{x}) = \boldsymbol{G}'(\boldsymbol{F}(\boldsymbol{x}))\boldsymbol{e}_1 = (J\boldsymbol{G}(\boldsymbol{F}(\boldsymbol{x})))\boldsymbol{e}_1.$$

The identity (1.1.2) shows that the first column of JG(F(x)) is v(G(F(x))) = v(x). In other words, $(G_*e_1)(x) = v(x)$. It follows that

$$oldsymbol{F}_*oldsymbol{v}=\mathbf{e}_1.$$

We have therefore proved:

Theorem 1.1.3. (The Rectification Theorem) Let U be an open subset of \mathbf{R}^n , $\mathbf{v}: U \to \mathbf{R}^n \ a \ \mathscr{C}^1$ vector field on U, and $\mathbf{a_0} \in U$ a regular point for \mathbf{v} , i.e. $\mathbf{v}(\mathbf{a_0}) \neq \mathbf{0}$. Then there are open sets V and W in \mathbf{R}^n with $\mathbf{a_0} \in V \subset U$, and $\mathbf{0} \in W$, and a diffeomorphism $\mathbf{F}: V \xrightarrow{\sim} W$ such that

$$oldsymbol{F}(oldsymbol{a_0}) = oldsymbol{0}, \quad and \quad oldsymbol{F}_*oldsymbol{v} = oldsymbol{e}_1.$$

1.1.4. Here is another way of seeing $G_*\mathbf{e}_1 = \mathbf{v}$. Consider the smooth path $t \mapsto \psi^{\mathbf{y}}(t)$ where $\psi^{\mathbf{y}}(t) = t\mathbf{e}_1 + y_2\mathbf{e}_2 + \cdots + y_n\mathbf{e}_n$ for a fixed point $\mathbf{y} = (0, y_2, \dots, y_{n-1}) \in \mathbf{R}^n$. Its velocity vector at every time point is \mathbf{e}_1 . If we restrict t to (-c, c) and $\sum_{i=2}^n y_i \mathbf{e}_i$ to $W' \cap \text{span}\{\mathbf{e}_2, \dots, \mathbf{e}_n\}$, the image of our smooth path $t \mapsto \psi^{\mathbf{y}}(t)$ under G is the \mathscr{C}^1 path $t \mapsto \varphi_{(0,y_2,\dots,y_n)}(t)$, whose velocity vectors are $\mathbf{v}(\varphi_{(0,y_2,\dots,y_n)}(t))$. Since we can pass paths of the type $t \mapsto \psi^{\mathbf{y}}(t)$ through every point in \mathbf{R}^n and hence through every point of W, it is immediate that $G_*\mathbf{e}_1 = \mathbf{v}$.

References

- [A1] V. I. Arnold, Ordinary Differential Equations, translated by Richard A. Silverman, MIT Press (also Prentice-Hall, India), Cambridge, MA, U.S.A., 1973.
- [A2] V. I. Arnold, Ordinary Differential Equations, Third Edition, translated by Roger Cooke, Universitext, Springer-Verlag, Berlin, 2006.
- [CL] E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955.