
LECTURE 23

Dates of the Lectures: March 31, 2021

As always, K ∈ {R, C}.
The symbol � is for flagging a cautionary comment or a tricky argument. It

occurs in the margins and is Knuth’s version of Bourbaki’s “dangerous bend sym-
bol”.

An n-tuple (x1, . . . , xn) of symbols (xi not necessarily real or complex numbers)
will also be written as a column vector when convenient. Thus

(x1, . . . , xn) =

x1...
xn

 .
A map f from a set S to a product set T1 × · · · × Tn will often be written as

an n-tuple f = (f1, . . . , fn), with fi a map from S to Ti, and hence, by the above
convention, as a column vector

f =

f1...
fn

 .
(See Remark 2.2.2 of Lecture 5 of ANA2.)

The default norm on Euclidean spaces of the form Rn is the Euclidean norm ‖ ‖2
and we will simply denote it as ‖ ‖. The space of K-linear transformations from
Kn to Km will be denoted HomR(Kn,Km) and will be identified in the standard
way with the space of m × n matrices Mm,n(K) and the operator norm1 on both
spaces will be denoted ‖ ‖◦. If m = n, we write Mn(R) for Mm,n(R), and L(Kn)
for HomK(Kn, Kn).

Note that (x1, . . . , xn) 6= [x1 . . . xn]. Each side is the transpose of the other.�

1. Summary of results from Lectures 20, 21 and 22

1.1. We assume throughout that Ω is a domain in R×Rn = Rn+1 and that v : Ω→
Rn is C 1. This means v is a locally Lipschitz, and since the questions we addressed
in Lectures 20, 21 and 22 (continuity, differentiability) are local properties, we
assume, without loss of generality, that v is Lipschitz with Lipschitz constant L.
As in loc.cit., we write (∆) for the DE

.
x = v(t,x), and if ξ = (τ, a) is a point

in Ω, we write ∆ξ for the initial value problem
.
x = v(t, x), x(τ) = a. As before

ϕξ denotes the solution of (∆)ξ and J(ξ) the maximal interval of existence of ϕξ.
Given a solution ϕ : I → Ω of ∆ on a closed interval I = [c, d] we can find an open
subset U of I ×Rn such that:

(a) U is a compact subset of Ω, where U is the closure of U in I ×Rn.

1See §§2.1 of Lecture 5 of ANA2.
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(b) (t,ϕ(t)) ∈ U for all t ∈ I. (However, if ξ is a point of U which is not on the
graph of ϕ , then (t,ϕξ(t)) need not lie in U for every t ∈ I. These points
will however lie in an open subset of I ×Rn that we denoted Uδ1 where δ1 is
a positive real number, and U δ1 is compact in Ω.)

(c) Let π : U → I be the natural projection. There exists a positive real number
δm such that for every τ ∈ I we have π−1(τ) = {τ} × B(ϕ(τ), δm) (see last
paragraph of p.4 of Lecture 20).

(d) I ⊂
⋂
ξ∈U J(ξ).

We thus have a map F : I×U −→ Rn given by F (t, τ,x) = ϕ(τ,x)(t). The main
results of Lectures 20, 21, and 22 are that F is continuous and the restriction of F
to any of the subsets I×π−1(τ) = I×{τ}×B(ϕ(τ), δm) is C 1 where we regard the
fibre π−1(τ) as an open ball in Rn of radius δm and centre ϕ(τ) (see (c) above).
We rephrase the last result as

Lemma 1.1.1. For fixed τ ∈ I, the map F τ : I×B(ϕ(τ), δm) −→ Rn given by the
rule (t,x)→ F (t, τ,x), is C 1.

1.1.2. One essential observation from the above summary is this. Suppose we have
a point (t0, τ0, a0) in R× Ω such that t0 ∈ J(τ0, a0). Then there is an interval I
containing t0 and τ0 in its interior and open ball B in Rn centred at a0 such that
{τ0} ×B ⊂ Ω and I ⊂ J(τ0,a) for all a ∈ B. This is seen by setting ϕ = ϕ(τ0,a0)

and picking a closed interval I in J(τ0, a0) containing t0 and τ0 in its interior and
using ϕ and I to build the open set U above. For B pick B(a0, δm). It follows
that on the map F τ0 , i.e. the map (t,a) 7→ ϕ(τ0,a)(t), is defined on I × B and is

C 1. See Figure 1 where I×B is embedded in Rn+2 via the map (t, a) 7→ (t, τ0, a)

2. Differentiability of solutions of (∆) with respect to all parameters

We continue to use the notations recalled in the summary above.

2.1. The open set Ω̃. Let

(2.1.1) Ω̃ =
{

(t, τ, x) ∈ Rn+2
∣∣ (τ, x) ∈ Ω and t ∈ J(τ, x)

}
.

We claim that Ω̃ is an open subset of Rn+2. To see this we move to the autonomous
differential equation associated with (∆). Here is a reminder of how that works.
Let w : Ω→ Rn+1 be the map

(2.1.2) w(s,x) = (1,v(s,x)).

We have an associated DE

(∆̃)
.
z = w(z).

Note that (∆̃) is autonomous. This is the autonomous differential equation associ-

ated with (∆). We now proceed with showing that Ω̃ is open. For (τ,a) ∈ Ω we
have the IVP

(∆̃)(τ,a)
.
z = w(z), z(0) = (τ, a).

We write ψ(τ,a) for the solution of (∆̃)(τ,a) and J̃(τ, a) for the maximal interval

of existence for this solution. Recall that if ψ(τ,a) = (ψ0, ψ1, . . . , ψn) then (a)

ψ0(t) = t + τ , and (b) writing g = (ψ1, . . . , ψn) we have
.
g(t) = v(t + τ, g(t)). It

follows that t 7→ g(t − τ) is a solution of (∆)(τ,a) whence J̃(τ, a) + τ ⊂ J(τ, a).
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Conversely, one checks easily that t 7→ (t+ τ, ϕ(τ,a)(t+ τ) is a solution of (∆̃)(τ,a),

whence J(τ, a) ⊂ J̃(τ, a) + τ . Thus

(2.1.3) ψ(τ,a)(t) = (t+ τ, ϕ(τ,a)(t+ τ)) and J(τ, a) = J̃(τ, a) + τ.

Note that 0 ∈ J̃(τ, a) for every (τ, a) ∈ Ω. In order to translate results involving
ψ(τ,a) to results involving ϕ(τ,a) and vice-versa we use the linear automorphism

linear automorphism T : Rn+2 −→ Rn+2 given by

T (t, τ, a) = (t+ τ, τ, a).

Let (t0, τ0,a0) be such that t0 ∈ J(τ0,a0). Pick I = [c, d] such that t0, τ0 ∈
(c, d) ⊂ I ⊂ J(τ0,a0). This is always possible. Let ϕ : I → Ω be the restriction
of ϕ(τ0,a0) to I. Let δ1, δm, U etc. be as in Subsection 1.1, where the input for

defining them is the solution ϕ : I → Ω of (∆). Let Ĩ = I − τ0. Then by (2.1.3),

Ĩ ⊂ J̃(τ0, a0). From the observation made in 1.1.2, with Ĩ playing the role of I,

ψ(τ0,a0) the role of ϕ, and 0 the role of τ0, there is an open ball B̃ in Ω centred at

(τ0, a0) such that Ĩ ⊂ J̃(τ,a) for all (τ, a) ∈ B. By shrinking B̃ if necessary, we

assume that B̃ ⊂ U .
Let V = T ((c− τ0, d− τ0)× B̃). Then V is an open neighbourhood of (t0, τ0 a0)

in Rn+2. Moreover, by] (2.1.3) we see that V ⊂ Ω̃. Since (t0, τ0, a0) is an arbitrary

point of Ω̃, we have proven:

Proposition 2.1.4. Ω̃ is an open subset of Rn+2.

Figure 1. The cylinder C = (c − τ0, d − τ0) × B̃ with θ0 =
(0, τ0, a0) and θ1 = (t0 − τ0, τ0, a0). Since C is open in Rn+2,

V = T (C) is also open in Rn+2. Moreover (t0, τ0, a0) ∈ V ⊂ Ω̃.

2.2. Differentiability with respect to τ . Let p0 = (t0, τ0, a0) be, as above, an

arbitrary point of Ω̃. Further, let I = [c, d], B̃ and T : Rn+2 → Rn+2 be as above.

And as above, let V = T ((c− τ0, d− τ0)× B̃. As we observed V is open in Rn+2,

contains po and lies entirely in Ω̃. Let G : Ĩ × B̃ −→ Rn+1 be the map given by

G(t, τ, a) = ψ(τ,a)(t).
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We know that G is C 1 (see, for instance, the last line of the discussion in §§1.1.2
above, with the role of τ0 being played by 0). By (2.1.3) we see that

(2.2.1) G(t, τ, a) = (t+ τ, ϕ(τ,a)(t+ τ)) (t, τ, a) ∈ Ĩ × B̃.

Formally, we have a map F : Ω̃→ Rn given by

(2.2.2) F (t, τ,x) = ϕ(τ,x)(t).

By (2.2.1) we get

(2.2.3) (s,ϕ(τ,a)(s)) = G(s− τ, τ,a) (s, τ, a) ∈ V.

Now the map (s, τ, a) 7→ G(s − τ, τ,a) on V is equal to the map (G◦T−1)|V .
Since T−1 is C∞ and G is C 1, it follows from (2.2.3) that the map (s, τ, a) 7→
(s,ϕ(τ,a)(s)) on V is C 1.

In summary, according to the discussion above, if p0 is a point in Ω̃, the we can

find an open neighbourhood V of p0 in Ω̃ such that the map F
∣∣
V

is C 1. We have
thus proved the following.

Theorem 2.2.4. Let Ω̃ be the open subset of Rn+2 defined in (2.1.1)2 and let

F : Ω̃→ Rn be the map given by the formula F (t, τ, x) = ϕ(τ,x)(t), (t, τ, x) ∈ Ω̃.

Then F is C 1.

2.2.5. Since being C 1 is a local property, it is clear if we assume v is C 1 and drop
the additional hypothesis that it is Lipschitz in x, Theorem 2.2.4 remains true.
This is because if v is C 1 it is locally Lipschitz in x.

3. One parameter groups again

Our results from the last few lectures allow us to make the following observations.

1. All our results transfer to manifolds. So suppose M is a differentiable manifold.
For simplicity, assume it is a C∞ manifold. Let Ω be an open subset of R×M
and suppose v : Ω→ T (M) is a continuous function such that

T (M)

$

��
Ω

v
<<yyyyyyyy

projection
// M

commutes. If M has an atlas such that on each coordinate chart v is locally
Lipschitz in the second variable, the the solutions of

.
x = v(t, x), x(τ) = a vary

continuously with (t, τ, a) for (τ, a) ∈ Ω and t ∈ J(τ, a), where J(τ, a) is the
maximal interval of existence of the solution ϕ(τ,a) of the IVP just mentioned.

Moreover, if v is C 1, then the set Ω̃ = {(t, τ, x) ∈ R× Ω | t ∈ J(τ, x)} is open

in R× Ω, and the map F : Ω̃→M given by F (t, τ, x) = ϕ(τ, x)(t) is C 1.

2See also Proposition 2.1.4.
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2. With M as above, suppose v : T (M) is a C 1 vector field such that the intervals
of existence J(0, x) are all R as x varies over M . For each t ∈ R let gt : M →M
be the map t 7→ ϕ(0, x)(t). the results of Problems 3 and 4 of Homework 6 obvi-
ously generalise to give that {gt} is a one parameter group of diffeomorphisms.
For fixed x ∈ M , the path t 7→ gtx is an integral curve (or phase curve) of the
vector field v through x.

3. In particular, if M is a compact C∞ manifold and v is a C 1 vector field, then
we have a one parameter group of differomorphisms {gt} whose phase velocity
field is v.

4. On GL(n, R) if v is the vector field defined in Problem 8 of the mid-term exam,
then we have a one parameter group in GL(n, R) whose phase velocity is v.
This fact can also be seen by using the properties of the one parameter group
{etA} on GL(n, R). However the technique outlined here and in the hint in the
exam generalises (easily) to Lie groups and gives us the definition of exponential
maps on Lie groups. We will not say more about this. Read about this when
you have time.
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