LECTURE 20

Date of the Lecture: March 22, 2021

As always, $\mathbf{K} \in \{ \mathbf{R}, \mathbf{C} \}.$

The symbol $\hat{\diamond}$ is for flagging a cautionary comment or a tricky argument. It occurs in the margins and is Knuth's version of Bourbaki's "dangerous bend symbol".

An *n*-tuple (x_1, \ldots, x_n) of symbols $(x_i$ not necessarily real or complex numbers) will also be written as a column vector when convenient. Thus

$$
(x_1,\ldots,x_n) = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}.
$$

A map f from a set S to a product set $T_1 \times \cdots \times T_n$ will often be written as an *n*-tuple $f = (f_1, \ldots, f_n)$, with f_i a map from S to T_i , and hence, by the above convention, as a column vector

$$
\boldsymbol{f} = \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix}.
$$

(See Remark 2.2.2 of [Lecture 5 of ANA2.](https://www.cmi.ac.in/~pramath/ANA2/Lectures/Lecture5.pdf))

The default norm on Euclidean spaces of the form \mathbb{R}^n is the Euclidean norm $\|\ \|_2$ and we will simply denote it as $\| \cdot \|$. The space of **K**-linear transformations from \mathbf{K}^n to \mathbf{K}^m will be denoted $\text{Hom}_{\mathbf{R}}(\mathbf{K}^n, \mathbf{K}^m)$ and will be identified in the standard way with the space of $m \times n$ matrices $M_{m,n}(\mathbf{K})$ and the operator norm^{[1](#page-0-0)} on both spaces will be denoted $\| \cdot \|_{\infty}$. If $m = n$, we write $M_n(\mathbf{R})$ for $M_{m,n}(\mathbf{R})$, and $L(\mathbf{K}^n)$ for $\text{Hom}_{\mathbf{K}}(\mathbf{K}^n, \mathbf{K}^n)$.

Note that $(x_1, \ldots, x_n) \neq [x_1 \ldots x_n]$. Each side is the transpose of the other.

1. Basic notations and conventions

1.1. Throughout this lecture we assume that $v: \Omega \to \mathbb{R}^n$ is a continuous function which is Lipschitz in x with Lipschitz constant L on a domain^{[2](#page-0-1)} Ω contained in $\mathbf{R} \times \mathbf{R}^n$. Our interest is in the behaviour of solutions of the differential equation

$$
\dot{\bm{x}} = \bm{v}(t, \bm{x})
$$

as we vary the initial conditions, i.e. the initial time point and the initial state. To that end, for a point $\xi = (\tau, a)$ in Ω , the symbol $\varphi_{(\tau, a)}$ (or simply φ_{ξ}) will denote the unique solution to initial value problem $(\Delta)_{(\tau,\, \boldsymbol{a})}$ below.

$$
(\Delta)_{(\tau,\mathbf{a})} \qquad \qquad \dot{\boldsymbol{x}} = \boldsymbol{v}(t,\boldsymbol{x}), \quad \boldsymbol{x}(\tau) = \boldsymbol{a}.
$$

We might often write $(\Delta)_{\xi}$ for $(\Delta)_{(\tau,a)}$. For $\xi = (\tau, a) \in \Omega$, $J(\xi) = J(\tau, a)$ will denote the maximal interval of existence for $(\Delta)_{(\tau,\mathbf{a})}$.

¹See §§2.1 of [Lecture 5 of ANA2.](https://www.cmi.ac.in/~pramath/ANA2/Lectures/Lecture5.pdf)

²i.e. a non-empty connected open subset of \mathbb{R}^n

2. Continuity with respect to initial conditions

We know from the remark in \S §§[1.1.2 of Lecture 6](https://www.cmi.ac.in/~pramath/DEQN21/Lectures/Lecture6.pdf) as well as [Theorem 1.1.2 \(a\)](https://www.cmi.ac.in/~pramath/DEQN21/Lectures/Lecture17and18.pdf) [of Lectures 17 and 18](https://www.cmi.ac.in/~pramath/DEQN21/Lectures/Lecture17and18.pdf) (when v is \mathscr{C}^1) that given a point $\xi_0 = (\tau_0, a_0) \in \Omega$, we have an open neighbourhood W of ξ_0 in Ω and a positive number b such that for every $\xi = (\tau, a) \in W$, $(\tau - b, \tau + b)$ is an interval of existence for the IVP $(\Delta)_{\xi}$. By shrinking W if necessary, we may assume $W = (\tau_0 - \varepsilon, \tau_0 + \varepsilon) \times B(\mathbf{a_0}, r)$ with $\varepsilon < b/2$. In such a case, we have a map $\mathbf{F}: (\tau_0 - \varepsilon, \tau_0 + \varepsilon) \times W \to \mathbf{R}^n$ given by $\bm{F}(t,\bm{\xi})=\bm{\varphi}_{\bm{\xi}}(t)$. One can ask if this map is continuous, or if it is \mathscr{C}^1 . In this section we will prove that **F** is continuous. Later we will show that it is \mathscr{C}^1 if **v** is \mathscr{C}^1 . We remind the reader that in this lecture v is Lipschitz in x .

2.1. For the rest of this section, we fix a solution $\varphi: [c, d] \to \Omega$ of the differential equation (Δ). As in [\(3.1.1\) of Lecture 19](https://www.cmi.ac.in/~pramath/DEQN21/Lectures/Lecture19.pdf) for each $\delta > 0$, set

$$
(2.1.1) \tU_{\delta} = \{(\tau, \mathbf{a}) \in \mathbf{R}^{n+1} \mid \tau \in [c, d], \|\mathbf{a} - \boldsymbol{\varphi}(\tau)\| < \delta\}.
$$

There are other descriptions of U_{δ} . Here are two more

$$
(2.1.2) \tU_{\delta} = \{ (\tau, \boldsymbol{a} + \boldsymbol{\varphi}(\tau)) \in \mathbf{R}^{n+1} \mid \tau \in [c, d], ||\boldsymbol{a}|| < \delta \}.
$$

Finally, if $f : [c, d] \times \mathbb{R}^n \to [c, d] \times \mathbb{R}^n$ is the homeomorphism $(t, x) \mapsto (t, x + \varphi(t)),$ and R_{δ} the rectangle $[c, d] \times B(0, \delta)$, then

$$
(2.1.3) \t\t\t U_{\delta} = f(R_{\delta}).
$$

Note that the closure of R_{δ} in $[c, d] \times \mathbf{R}^n$ is $\overline{R}_{\delta} := [c, d] \times \overline{B}(0, \delta)$, whence, since f is a homeomorphism,

$$
\overline{U}_{\delta} = f(\overline{R}_{\delta}).
$$

2.1.5. According to [\[Lecture 19, Lemma 3.1.2\]](https://www.cmi.ac.in/~pramath/DEQN21/Lectures/Lecture19.pdf) there is a δ_1 such that the closure \overline{U}_{δ_1} of U_{δ_1} in \mathbb{R}^n is a compact subset of Ω . We will show that there is a δ with $0 < \delta < \delta_1$ such that $[c, d]$ is an interval of existence for $(\Delta)_{\epsilon}$ for every $\xi = (\tau, a)$ in U_{δ} . Note that this is not the same as the assertion in [1.1.2 of Lecture 6](https://www.cmi.ac.in/~pramath/DEQN21/Lectures/Lecture6.pdf) though it is closely related to that.

Theorem 2.1.6. With the above notations, there exists a $\delta > 0$, such that

- (a) $U_{\delta} \subset \Omega$.
- (b) For every $\xi = (\tau, a) \in U_{\delta}$ the solution φ_{ξ} to $(\Delta)_{\xi}$ exists on $[c, d]$.
- (c) The map $(t, \tau, a) \mapsto \varphi_{(\tau, a)}(t)$ is uniformly continuous on $V = [c, d] \times U_{\delta}$.

Proof. Fix $\delta_1 > 0$ as in [2.1.5,](#page-1-0) i.e. fix δ_1 such that \overline{U}_{δ_1} is a compact subset in Ω . Let $\mathbf{D} = \{ \delta \mid 0 < \delta < e^{-L(d-c)} \delta_1 \}.$ We will show that (a), (b), and (c) are true for every δ in \mathbf{D} .

Let

$$
U=\bigcup_{\delta\in\mathbf{D}}U_{\delta}.
$$

For $\xi \in U$, the fundamental estimate (with $\epsilon_1 = \epsilon_2 = 0$) yields

$$
\|\boldsymbol{\varphi}(t)-\boldsymbol{\varphi}_{\boldsymbol{\xi}}(t)\|<\delta_1
$$

for all $t \in [c, d] \cap J(\xi)$, where, as agreed upon, $J(\xi)$ is the maximal interval of existence associated with $(\Delta)_{\xi}$. In other words, $(t, \varphi_{\xi}(t)) \in U_{\delta_1}$ for all t in the intersection $J(\xi) \cap [c, d]$. Since $(t, \varphi_{\xi}(t))$ must exit the compact set \overline{U}_{δ_1} , the above

FIGURE 1. U_{δ_1} is the region between the two brown curves in the figure on the right

inequality forces it to exit at ${c} \times \mathbb{R}^n$ and ${d} \times \mathbb{R}^n$. Thus $[c, d] \cap J(\xi) = [c, d]$, i.e. $[c, d]$ is an interval of existence for ξ for every $\xi \in U$.

Let $\mathbf{F}: [c, d] \times U \to \mathbf{R}^n$ be the map given by the formula

 $\boldsymbol{F}(t,\tau,\boldsymbol{a})=\boldsymbol{\varphi}_{(\tau,\boldsymbol{a})}(t)$

for $(t, \tau, a) \in [c, d] \times U$. Since U is a subset of \overline{U}_{δ_1} which is compact, v is bounded in U. Let $M < \infty$ be an upper bound for $||v||$ in U.

Let $\xi_0 = (\tau_0, a_0) \in U$ and let us examine the continuity of **F** at $(s, \xi_0) \in$ $[c, d] \times U$. Since U is open in $[c, d] \times \mathbb{R}^n$, there exists a rectangle $W = [\alpha, \beta] \times B(\boldsymbol{a_0}, r)$ in U containing ξ_0 , and hence, for every $\xi = (\tau, a) \in W$, the line segment $[\alpha, \beta] \times {\{a\}}$ lies in $U \subset \Omega$. Applying [\[Lecture 19, Lemma 2.1.3\]](https://www.cmi.ac.in/~pramath/DEQN21/Lectures/Lecture19.pdf), we see that

$$
||\mathbf{a} - \boldsymbol{\varphi}_{(\tau,\mathbf{a})}(\tau_0)|| \leq \frac{M}{L}(e^{L|\tau - \tau_0|} - 1) \qquad (\boldsymbol{\xi} = (\tau,\mathbf{a}) \in W).
$$

We claim that $\varphi_{\xi} \to \varphi_{\xi_0}$, uniformly on [c, d], as $\xi \to \xi_0$. We may assume that ξ approaches ξ_0 through points in W. By the fundamental estimate (used twice) we have

$$
\|\varphi_{\xi_0}(t) - \varphi_{\xi}(t)\| \le \|\varphi_{\xi_0}(\tau_0) - \varphi_{\xi}(\tau_0)\|e^{L(d-c)}\n= \|a_0 - \varphi_{(\tau,a)}(\tau_0)\|e^{L(d-c)}\n\le \|a_0 - a\|e^{L(d-c)} + \|a - \varphi_{(\tau,a)}(\tau_0)\|e^{L(d-c)}\n\le \|a_0 - a\|e^{L(d-c)} + \frac{M}{L}(e^{L|\tau - \tau_0|} - 1)e^{L(d-c)}
$$

for $\xi \in W$. The last inequality is from (†). The expression in the bottom line, namely $h(\boldsymbol{\xi}) = ||\boldsymbol{a_0} - \boldsymbol{a}||e^{L(d-c)} + \frac{M}{L}(e^{L|\tau-\tau_0|} - 1)e^{L(d-c)}$, is a continuous function of $\boldsymbol{\xi} = (\tau, \boldsymbol{a})$ which is independent of $t \in [c, d]$. Moreover, $h(\boldsymbol{\xi}) \to 0$ as $\boldsymbol{\xi} \to \boldsymbol{\xi_0}$.

This means $\varphi_{\xi} \to \varphi_{\xi_0}$, uniformly on $[c, d]$, as $\xi \to \xi_0$. In greater detail, given $\varepsilon > 0$, we can find $\eta > 0$ (independent of $t \in [c, d]$) such that $h(\xi) < \varepsilon$ whenever $\|\boldsymbol{\xi} - \boldsymbol{\xi_0}\| < \eta$. Thus, from (‡), $\|\boldsymbol{\varphi}_{\boldsymbol{\xi_0}}(t) - \boldsymbol{\varphi}_{\boldsymbol{\xi}}(t)\| < \epsilon$ for all $t \in [c, d]$, whenever $\|\boldsymbol{\xi} - \boldsymbol{\xi_0}\| < \eta$. This proves the assertion of uniform convergence.

We now show that $\mathbf{F}: [c, d] \times U \to \mathbf{R}^n$ is continuous. Let $\varphi_0 = \varphi_{\xi_0}$. Since φ_{ξ_0} converges uniformly on [c, d] to φ_0 as $\xi \to \xi_0$, therefore given $\varepsilon > 0$ we can find $\eta_1 > 0$ such that

$$
\|\boldsymbol{\varphi}_{\xi}(s) - \boldsymbol{\varphi}_{0}(s)\| < \varepsilon \quad (s \in [c, d])
$$

whenever $\|\boldsymbol{\xi} - \boldsymbol{\xi_0}\| < \eta_1$. Now φ_0 is uniformly continuous on the compact set $[c, d]$, and hence there exists $\eta_2 > 0$ such that

$$
\|\boldsymbol{\varphi_0}(t) - \boldsymbol{\varphi_0}(s)\| < \varepsilon
$$

whenever $|t - s| < \eta_2$. Since

$$
\|\boldsymbol{F}(t,\boldsymbol{\xi})-\boldsymbol{F}(s,\boldsymbol{\xi_0})\| = \|\boldsymbol{\varphi}_{\boldsymbol{\xi}}(t)-\boldsymbol{\varphi_0}(s)\| \le \|\boldsymbol{\varphi}_{\boldsymbol{\xi}}(t)-\boldsymbol{\varphi_0}(t)\| + \|\boldsymbol{\varphi_0}(t)-\boldsymbol{\varphi_0}(s)\|,
$$
 it follows that

$$
\|\boldsymbol{F}(t,\boldsymbol{\xi})-\boldsymbol{F}(s,\boldsymbol{\xi_0})\|<2\varepsilon
$$

whenever $\|\boldsymbol{\xi} - \boldsymbol{\xi_0}\| < \eta_1$ and $|t - s| < \eta_2$. Thus **F** is continuous on $[c, d] \times U$.

We will now prove (a), (b) and (c) for every $\delta \in \mathbf{D}$, i.e. for every δ such that $0 < \delta < e^{-L(d-c)}\delta_1$. Using the description of U_{δ} and \overline{U}_{δ} in [\(2.1.3\)](#page-1-1) and [\(2.1.4\)](#page-1-2) we see that if $\delta' < \delta''$ then $\overline{U}_{\delta'} \subset U_{\delta''}$, since $[c, d] \times \overline{B}(0, \delta') \subset [c, d] \times B(0, \delta'')$.

Let $\delta_m = e^{-L(d-c)}\delta_1$. Note that $U = U_{\delta_m}$. Pick $\delta \in \mathbf{D}$. It is clear that δ satisfies parts (a) and (b) of the theorem since $U_{\delta} \subset U$. It remains to prove (c). Since $\delta < \delta_m$, from the observations in the last paragraph, $\overline{U}_{\delta} \subset U$. Thus **F** is defined and continuous on $[c, d] \times \overline{U}_{\delta}$. Since $[c, d] \times \overline{U}_{\delta}$ is compact, **F** is uniformly continuous on it. It follows that **F** is uniformly continuous on $[c, d] \times U_{\delta}$. This proves (c) for every $\delta \in \mathbf{D}$.

REFERENCES

- [A1] V. I. Arnold, Ordinary Differential Equations, translated by Richard A. Silverman, MIT Press (also Prentice-Hall, India), Cambridge,MA, U.S.A., 1973.
- [A2] V. I. Arnold, Ordinary Differential Equations, Third Edition, translated by Roger Cooke, Universitext, Springer-Verlag, Berlin, 2006.
- [CL] E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955.