LECTURE 20

Date of the Lecture: March 22, 2021

As always, K € {R, C}.

The symbol @ is for flagging a cautionary comment or a tricky argument. It
occurs in the margins and is Knuth’s version of Bourbaki’s “dangerous bend sym-
bol”.

An n-tuple (z1,...,z,) of symbols (z; not necessarily real or complex numbers)
will also be written as a column vector when convenient. Thus

T
(X1, . Tn) =
Ty

A map f from a set S to a product set T} x --- x T}, will often be written as
an n-tuple f = (f1,..., fn), with f; a map from S to T}, and hence, by the above
convention, as a column vector
fi
r=|:
fn
(See Remark 2.2.2 of Lecture 5 of ANA2.)

The default norm on Euclidean spaces of the form R™ is the Euclidean norm || ||2
and we will simply denote it as || ||. The space of K-linear transformations from
K" to K™ will be denoted Homg (K™, K™) and will be identified in the standard
way with the space of m x n matrices M,, ,,(K) and the operator norm' on both
spaces will be denoted || ||o. If m = n, we write M, (R) for M,, ,(R), and L(K")
for Homg (K™, K").

Note that (z1,...,%,) # [21... z,]. Each side is the transpose of the other.

1. Basic notations and conventions

1.1. Throughout this lecture we assume that v: Q — R"™ is a continuous function
which is Lipschitz in @ with Lipschitz constant L on a domain? € contained in
R x R™. Our interest is in the behaviour of solutions of the differential equation

(A) T =v(t )

as we vary the initial conditions, i.e. the initial time point and the initial state. To
that end, for a point § = (7, a) in €, the symbol ¢, o) (or simply p¢) will denote
the unique solution to initial value problem (A),, 4) below.

(A)(r,a) T=v(tx), x(r)=a.

We might often write (A)¢ for (A)(rq). For & = (1,a) € Q, J(§) = J(7, a) will
denote the maximal interval of existence for (A)(,, 4).

1See §82.1 of Lecture 5 of ANA2.
%ie. a non-empty connected open subset of R™
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2. Continuity with respect to initial conditions

We know from the remark in §§§ 1.1.2 of Lecture 6 as well as Theorem 1.1.2 (a)
of Lectures 17 and 18 (when v is €!) that given a point & = (70,a0) € 2, we
have an open neighbourhood W of &g in 2 and a positive number b such that for
every £ = (1,a) € W, (1 — b, 7+ b) is an interval of existence for the IVP (A)g.
By shrinking W if necessary, we may assume W = (19 — €, 79 + €) X B(ag,r) with
€ < b/2. In such a case, we have a map F': (19 —&,790 + ) x W — R" given by
F(t,€) = p¢(t). One can ask if this map is continuous, or if it is €. In this section
we will prove that F' is continuous. Later we will show that it is € if v is €'. We
remind the reader that in this lecture v is Lipschitz in x.

2.1. For the rest of this section, we fix a solution ¢: [¢, d] — Q of the differential
equation (A). Asin (3.1.1) of Lecture 19 for each ¢ > 0, set

(2.1.1) Us = {(r,a) e R""' | 7 € [¢,d], |la — ¢(7)| < d}.
There are other descriptions of Us. Here are two more
(2.1.2) Us ={(r,a+ (7)) e R"" | 7 € [c,d], |la]| <}

Finally, if f: [¢,d] X R™ — [¢,d] x R™ is the homeomorphism (¢, x) — (¢, + ¢(t)),
and Rj the rectangle [c,d] x B(0, §), then

(2.1.3) Us = f(Rs).

Note that the closure of Rs in [c,d] x R™ is Rs:= [c,d] x B(0, ), whence, since
f is a homeomorphism,

(2.1.4) Us = f(Rs).

2.1.5. According to [Lecture 19, Lemma 3.1.2] there is a d; such that the closure
U(sl of Us, in R™ is a compact subset of 2. We will show that there is a § with
0 < 0 < 607 such that [c,d] is an interval of existence for (A)g for every £ = (7, a)
in Us. Note that this is not the same as the assertion in 1.1.2 of Lecture 6 though
it is closely related to that.

Theorem 2.1.6. With the above notations, there exists a § > 0, such that
(a) Us C Q.

(b) For every & = (7,a) € Us the solution ¢, to (A)g exists on [c,d].

(c) The map (t,7,a) = @(; q)(t) is uniformly continuous on V = [c,d] x Us.

Proof. Fix 6; > 0 as in 2.1.5, i.e. fix §; such that Us, is a compact subset in .
Let D={0]0 <6 < e @95} We will show that (a), (b), and (c) are true for
every ¢ in D.
Let
U= Us.
6eD
For £ € U, the fundamental estimate (with ¢; = ez = 0) yields

() = el < 01
for all t € [c,d] N J(&), where, as agreed upon, J(&) is the maximal interval of
existence associated with (A)e. In other words, (f,(t)) € Us, for all ¢ in the

intersection .J(£) N e, d]. Since (t, pg(t)) must exit the compact set Us,, the above
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FIGURE 1. Us, is the region between the two brown curves in the
figure on the right

inequality forces it to exit at {¢} x R™ and {d} x R"™. Thus [¢,d] N J(&) = [c,d],
i.e. [e,d] is an interval of existence for &€ for every & € U.
Let F: [c,d] x U — R™ be the map given by the formula

F(ta T, a) = P(r,a) (t)

for (t,7,a) € [¢,d] x U. Since U is a subset of Us, which is compact, v is bounded
in U. Let M < oo be an upper bound for ||v| in U.

Let &9 = (70,a0) € U and let us examine the continuity of F at (s,&) €
[e,d]xU. Since U is open in [c, d] x R™, there exists a rectangle W = [«, 8] x B(ao, )
in U containing &g, and hence, for every € = (7, a) € W, the line segment [a, f]x{a}
lies in U C Q. Applying [Lecture 19, Lemma 2.1.3], we see that

(1) la — @) ()l < F(HT—1) (g =(1,0) e W),

We claim that ¢ — ¢, uniformly on [c,d], as & — &o. We may assume that §
approaches &g through points in W. By the fundamental estimate (used twice) we
have

e, (£) = el < llpey (10) = pe(To)lle 4=
= ||(10 — P(r,a) (TO)HGL(d_C)
< llao — a[|le" =) +|la — @(; a) (10) le

< |lag — a”eL(d—c) + %(eLlT—Tol . 1)6L(d_c)

1)

L(d—c)

for £ € W. The last inequality is from (f). The expression in the bottom line,

namely h(§) = |lao — aljeX(@=9) 4 2L (ell=m0l — 1)el(d=¢) is a continuous function

of &€ = (7, a) which is independent of ¢ € [¢,d]. Moreover, h(€¢) — 0 as &€ — &o.
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This means @, — g, uniformly on [c,d], as & — &o. In greater detail, given
e > 0, we can find n > 0 (independent of ¢ € [¢,d]) such that h(€) < & whenever
1€ — &oll < m. Thus, from (1), [lg, (1) — pe(t)]| < € for all t € [c,d], whenever
I€ — &oll < . This proves the assertion of uniform convergence.

FIGURE 2.

We now show that F': [c,d] x U — R™ is continuous. Let o = g, . Since ¢
converges uniformly on [c,d] to g as & — &o, therefore given € > 0 we can find
m1 > 0 such that

lpe(s) —pols)ll <e (s €cd])
whenever [|€ — &o|| < m1. Now ¢g is uniformly continuous on the compact set [c, d],
and hence there exists 7 > 0 such that

llpo(t) = wol(s)ll <e

whenever |t — s| < 13. Since

[F(t,€) = F(s,80)ll = llpe(t) — po(s)ll < llpe(t) — @o ()| + llpo(t) — pols)ll,

it follows that
I1F (¢, &) — F(s,80)l < 2¢
whenever ||€ — &o|| < m and |t — s| < 12. Thus F' is continuous on [c,d] x U.

We will now prove (a), (b) and (c) for every ¢ € D, i.e. for every § such that
0 <6 < e Lld=e)§,. Using the description of Us and U in (2.1.3) and (2.1.4) we
see that if 0’ < §” then Us C Usn, since [¢,d] x B(0, §') C [c,d] x B(0,8").

Let 8,, = e L(d=9)§, . Note that U = Us, . Pick § € D. It is clear that §
satisfies parts (a) and (b) of the theorem since Us C U. It remains to prove (c).
Since § < 6,y,, from the observations in the last paragraph, Us C U. Thus F is
defined and continuous on [c,d] x Us. Since [c,d] x Us is compact, F is uniformly
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continuous on it. It follows that F' is uniformly continuous on [¢,d] x Us. This
proves (c) for every § € D. O
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