LECTURE 20

Date of the Lecture: March 22, 2021

As always, $\mathbf{K} \in {\{\mathbf{R}, \mathbf{C}\}}$.

The symbol P is for flagging a cautionary comment or a tricky argument. It occurs in the margins and is Knuth's version of Bourbaki's "dangerous bend symbol".

An *n*-tuple (x_1, \ldots, x_n) of symbols $(x_i \text{ not necessarily real or complex numbers}) will also be written as a column vector when convenient. Thus$

$$(x_1,\ldots,x_n) = \begin{bmatrix} x_1\\ \vdots\\ x_n \end{bmatrix}$$

A map f from a set S to a product set $T_1 \times \cdots \times T_n$ will often be written as an *n*-tuple $f = (f_1, \ldots, f_n)$, with f_i a map from S to T_i , and hence, by the above convention, as a column vector

$$oldsymbol{f} = egin{bmatrix} f_1 \ dots \ f_n \end{bmatrix}.$$

(See Remark 2.2.2 of Lecture 5 of ANA2.)

The default norm on Euclidean spaces of the form \mathbf{R}^n is the Euclidean norm $|| ||_2$ and we will simply denote it as || ||. The space of **K**-linear transformations from \mathbf{K}^n to \mathbf{K}^m will be denoted $\operatorname{Hom}_{\mathbf{R}}(\mathbf{K}^n, \mathbf{K}^m)$ and will be identified in the standard way with the space of $m \times n$ matrices $M_{m,n}(\mathbf{K})$ and the operator norm¹ on both spaces will be denoted $|| ||_{\circ}$. If m = n, we write $M_n(\mathbf{R})$ for $M_{m,n}(\mathbf{R})$, and $L(\mathbf{K}^n)$ for $\operatorname{Hom}_{\mathbf{K}}(\mathbf{K}^n, \mathbf{K}^n)$.

Note that $(x_1, \ldots, x_n) \neq [x_1 \ldots x_n]$. Each side is the transpose of the other.

1. Basic notations and conventions

1.1. Throughout this lecture we assume that $v: \Omega \to \mathbf{R}^n$ is a continuous function which is Lipschitz in x with Lipschitz constant L on a domain² Ω contained in $\mathbf{R} \times \mathbf{R}^n$. Our interest is in the behaviour of solutions of the differential equation

$$\dot{\boldsymbol{x}} = \boldsymbol{v}(t, \, \boldsymbol{x})$$

as we vary the initial conditions, i.e. the initial time point and the initial state. To that end, for a point $\boldsymbol{\xi} = (\tau, \boldsymbol{a})$ in Ω , the symbol $\boldsymbol{\varphi}_{(\tau, \boldsymbol{a})}$ (or simply $\boldsymbol{\varphi}_{\boldsymbol{\xi}}$) will denote the unique solution to initial value problem $(\Delta)_{(\tau, \boldsymbol{a})}$ below.

$$(\Delta)_{(\tau, \boldsymbol{a})}$$
 $\dot{\boldsymbol{x}} = \boldsymbol{v}(t, \boldsymbol{x}), \quad \boldsymbol{x}(\tau) = \boldsymbol{a}$

We might often write $(\Delta)_{\boldsymbol{\xi}}$ for $(\Delta)_{(\tau,\boldsymbol{a})}$. For $\boldsymbol{\xi} = (\tau,\boldsymbol{a}) \in \Omega$, $J(\boldsymbol{\xi}) = J(\tau,\boldsymbol{a})$ will denote the maximal interval of existence for $(\Delta)_{(\tau,\boldsymbol{a})}$.

¹See §§2.1 of Lecture 5 of ANA2.

²i.e. a non-empty connected open subset of \mathbf{R}^n

2. Continuity with respect to initial conditions

We know from the remark in §§§ 1.1.2 of Lecture 6 as well as Theorem 1.1.2 (a) of Lectures 17 and 18 (when \boldsymbol{v} is \mathscr{C}^1) that given a point $\boldsymbol{\xi}_0 = (\tau_0, \boldsymbol{a}_0) \in \Omega$, we have an open neighbourhood W of $\boldsymbol{\xi}_0$ in Ω and a positive number b such that for every $\boldsymbol{\xi} = (\tau, \boldsymbol{a}) \in W$, $(\tau - b, \tau + b)$ is an interval of existence for the IVP $(\Delta)_{\boldsymbol{\xi}}$. By shrinking W if necessary, we may assume $W = (\tau_0 - \varepsilon, \tau_0 + \varepsilon) \times B(\boldsymbol{a}_0, r)$ with $\varepsilon < b/2$. In such a case, we have a map $\boldsymbol{F} : (\tau_0 - \varepsilon, \tau_0 + \varepsilon) \times W \to \mathbb{R}^n$ given by $\boldsymbol{F}(t, \boldsymbol{\xi}) = \boldsymbol{\varphi}_{\boldsymbol{\xi}}(t)$. One can ask if this map is continuous, or if it is \mathscr{C}^1 . In this section we will prove that \boldsymbol{F} is continuous. Later we will show that it is \mathscr{C}^1 if \boldsymbol{v} is \mathscr{C}^1 . We remind the reader that in this lecture \boldsymbol{v} is Lipschitz in \boldsymbol{x} .

2.1. For the rest of this section, we fix a solution $\varphi : [c, d] \to \Omega$ of the differential equation (Δ). As in (3.1.1) of Lecture 19 for each $\delta > 0$, set

(2.1.1)
$$U_{\delta} = \{ (\tau, \boldsymbol{a}) \in \mathbf{R}^{n+1} \mid \tau \in [c, d], \, \|\boldsymbol{a} - \boldsymbol{\varphi}(\tau)\| < \delta \}.$$

There are other descriptions of U_{δ} . Here are two more

(2.1.2)
$$U_{\delta} = \{ (\tau, \boldsymbol{a} + \boldsymbol{\varphi}(\tau)) \in \mathbf{R}^{n+1} \mid \tau \in [c, d], \, \|\boldsymbol{a}\| < \delta \}.$$

Finally, if $f: [c, d] \times \mathbf{R}^n \to [c, d] \times \mathbf{R}^n$ is the homeomorphism $(t, \mathbf{x}) \mapsto (t, \mathbf{x} + \boldsymbol{\varphi}(t))$, and R_{δ} the rectangle $[c, d] \times B(\mathbf{0}, \delta)$, then

(2.1.3)
$$U_{\delta} = f(R_{\delta}).$$

Note that the closure of R_{δ} in $[c, d] \times \mathbf{R}^n$ is $\overline{R}_{\delta} := [c, d] \times \overline{B}(\mathbf{0}, \delta)$, whence, since f is a homeomorphism,

(2.1.4)
$$\overline{U}_{\delta} = f(\overline{R}_{\delta}).$$

2.1.5. According to [Lecture 19, Lemma 3.1.2] there is a δ_1 such that the closure \overline{U}_{δ_1} of U_{δ_1} in \mathbf{R}^n is a compact subset of Ω . We will show that there is a δ with $0 < \delta < \delta_1$ such that [c, d] is an interval of existence for $(\Delta)_{\boldsymbol{\xi}}$ for every $\boldsymbol{\xi} = (\tau, \boldsymbol{a})$ in U_{δ} . Note that this is not the same as the assertion in 1.1.2 of Lecture 6 though it is closely related to that.

Theorem 2.1.6. With the above notations, there exists a $\delta > 0$, such that

- (a) $U_{\delta} \subset \Omega$.
- (b) For every $\boldsymbol{\xi} = (\tau, \boldsymbol{a}) \in U_{\delta}$ the solution $\boldsymbol{\varphi}_{\boldsymbol{\xi}}$ to $(\Delta)_{\boldsymbol{\xi}}$ exists on [c, d].
- (c) The map $(t, \tau, \mathbf{a}) \mapsto \varphi_{(\tau, \mathbf{a})}(t)$ is uniformly continuous on $V = [c, d] \times U_{\delta}$.

Proof. Fix $\delta_1 > 0$ as in 2.1.5, i.e. fix δ_1 such that \overline{U}_{δ_1} is a compact subset in Ω . Let $\mathbf{D} = \{\delta \mid 0 < \delta < e^{-L(d-c)}\delta_1\}$. We will show that (a), (b), and (c) are true for every δ in \mathbf{D} .

Let

$$U = \bigcup_{\delta \in \mathbf{D}} U_{\delta}.$$

For $\boldsymbol{\xi} \in U$, the fundamental estimate (with $\epsilon_1 = \epsilon_2 = 0$) yields

$$\|\boldsymbol{\varphi}(t) - \boldsymbol{\varphi}_{\boldsymbol{\xi}}(t)\| < \delta_1$$

for all $t \in [c,d] \cap J(\boldsymbol{\xi})$, where, as agreed upon, $J(\boldsymbol{\xi})$ is the maximal interval of existence associated with $(\Delta)_{\boldsymbol{\xi}}$. In other words, $(t, \varphi_{\boldsymbol{\xi}}(t)) \in U_{\delta_1}$ for all t in the intersection $J(\boldsymbol{\xi}) \cap [c,d]$. Since $(t, \varphi_{\boldsymbol{\xi}}(t))$ must exit the compact set \overline{U}_{δ_1} , the above

FIGURE 1. U_{δ_1} is the region between the two brown curves in the figure on the right

inequality forces it to exit at $\{c\} \times \mathbb{R}^n$ and $\{d\} \times \mathbb{R}^n$. Thus $[c,d] \cap J(\boldsymbol{\xi}) = [c,d]$, i.e. [c,d] is an interval of existence for $\boldsymbol{\xi}$ for every $\boldsymbol{\xi} \in U$.

Let $\boldsymbol{F} \colon [c,d] \times U \to \mathbf{R}^n$ be the map given by the formula

 $\boldsymbol{F}(t,\tau,\boldsymbol{a}) = \boldsymbol{\varphi}_{(\tau,\boldsymbol{a})}(t)$

for $(t, \tau, \boldsymbol{a}) \in [c, d] \times U$. Since U is a subset of \overline{U}_{δ_1} which is compact, \boldsymbol{v} is bounded in U. Let $M < \infty$ be an upper bound for $\|\boldsymbol{v}\|$ in U.

Let $\boldsymbol{\xi_0} = (\tau_0, \boldsymbol{a_0}) \in U$ and let us examine the continuity of \boldsymbol{F} at $(\boldsymbol{s}, \boldsymbol{\xi_0}) \in [c, d] \times U$. Since U is open in $[c, d] \times \mathbb{R}^n$, there exists a rectangle $W = [\alpha, \beta] \times B(\boldsymbol{a_0}, r)$ in U containing $\boldsymbol{\xi_0}$, and hence, for every $\boldsymbol{\xi} = (\tau, \boldsymbol{a}) \in W$, the line segment $[\alpha, \beta] \times \{\boldsymbol{a}\}$ lies in $U \subset \Omega$. Applying [Lecture 19, Lemma 2.1.3], we see that

(†)
$$\|\boldsymbol{a} - \boldsymbol{\varphi}_{(\tau, \boldsymbol{a})}(\tau_0)\| \le \frac{M}{L} (e^{L|\tau - \tau_0|} - 1) \quad (\boldsymbol{\xi} = (\tau, \boldsymbol{a}) \in W)$$

We claim that $\varphi_{\boldsymbol{\xi}} \to \varphi_{\boldsymbol{\xi}_0}$, uniformly on [c, d], as $\boldsymbol{\xi} \to \boldsymbol{\xi}_0$. We may assume that $\boldsymbol{\xi}$ approaches $\boldsymbol{\xi}_0$ through points in W. By the fundamental estimate (used twice) we have

$$\begin{aligned} \|\varphi_{\boldsymbol{\xi}_{\mathbf{0}}}(t) - \varphi_{\boldsymbol{\xi}}(t)\| &\leq \|\varphi_{\boldsymbol{\xi}_{\mathbf{0}}}(\tau_{0}) - \varphi_{\boldsymbol{\xi}}(\tau_{0})\|e^{L(d-c)} \\ &= \|\boldsymbol{a}_{\mathbf{0}} - \varphi_{(\tau,\boldsymbol{a})}(\tau_{0})\|e^{L(d-c)} \\ &\leq \|\boldsymbol{a}_{\mathbf{0}} - \boldsymbol{a}\|e^{L(d-c)} + \|\boldsymbol{a} - \varphi_{(\tau,\boldsymbol{a})}(\tau_{0})\|e^{L(d-c)} \\ &\leq \|\boldsymbol{a}_{\mathbf{0}} - \boldsymbol{a}\|e^{L(d-c)} + \frac{M}{L}(e^{L|\tau-\tau_{0}|} - 1)e^{L(d-c)} \end{aligned}$$

for $\boldsymbol{\xi} \in W$. The last inequality is from (†). The expression in the bottom line, namely $h(\boldsymbol{\xi}) = \|\boldsymbol{a}_0 - \boldsymbol{a}\| e^{L(d-c)} + \frac{M}{L} (e^{L|\tau-\tau_0|} - 1) e^{L(d-c)}$, is a continuous function of $\boldsymbol{\xi} = (\tau, \boldsymbol{a})$ which is independent of $t \in [c, d]$. Moreover, $h(\boldsymbol{\xi}) \to 0$ as $\boldsymbol{\xi} \to \boldsymbol{\xi}_0$.

This means $\varphi_{\boldsymbol{\xi}} \to \varphi_{\boldsymbol{\xi}_0}$, uniformly on [c, d], as $\boldsymbol{\xi} \to \boldsymbol{\xi}_0$. In greater detail, given $\varepsilon > 0$, we can find $\eta > 0$ (independent of $t \in [c, d]$) such that $h(\boldsymbol{\xi}) < \varepsilon$ whenever $\|\boldsymbol{\xi} - \boldsymbol{\xi}_0\| < \eta$. Thus, from (‡), $\|\varphi_{\boldsymbol{\xi}_0}(t) - \varphi_{\boldsymbol{\xi}}(t)\| < \epsilon$ for all $t \in [c, d]$, whenever $\|\boldsymbol{\xi} - \boldsymbol{\xi}_0\| < \eta$. This proves the assertion of uniform convergence.

FIGURE 2.

We now show that $\mathbf{F}: [c, d] \times U \to \mathbf{R}^n$ is continuous. Let $\varphi_0 = \varphi_{\boldsymbol{\xi}_0}$. Since $\varphi_{\boldsymbol{\xi}}$ converges uniformly on [c, d] to φ_0 as $\boldsymbol{\xi} \to \boldsymbol{\xi}_0$, therefore given $\varepsilon > 0$ we can find $\eta_1 > 0$ such that

$$\|\boldsymbol{\varphi}_{\boldsymbol{\xi}}(s) - \boldsymbol{\varphi}_{\boldsymbol{0}}(s)\| < \varepsilon \quad (s \in [c, d])$$

whenever $\|\boldsymbol{\xi} - \boldsymbol{\xi}_{\mathbf{0}}\| < \eta_1$. Now $\boldsymbol{\varphi}_{\mathbf{0}}$ is uniformly continuous on the compact set [c, d], and hence there exists $\eta_2 > 0$ such that

$$\|\boldsymbol{\varphi}_{\mathbf{0}}(t) - \boldsymbol{\varphi}_{\mathbf{0}}(s)\| < \varepsilon$$

whenever $|t - s| < \eta_2$. Since

$$\|\boldsymbol{F}(t,\boldsymbol{\xi}) - \boldsymbol{F}(s,\boldsymbol{\xi_0})\| = \|\boldsymbol{\varphi}_{\boldsymbol{\xi}}(t) - \boldsymbol{\varphi}_{\boldsymbol{0}}(s)\| \le \|\boldsymbol{\varphi}_{\boldsymbol{\xi}}(t) - \boldsymbol{\varphi}_{\boldsymbol{0}}(t)\| + \|\boldsymbol{\varphi}_{\boldsymbol{0}}(t) - \boldsymbol{\varphi}_{\boldsymbol{0}}(s)\|,$$
 it follows that

$$\|\boldsymbol{F}(t,\boldsymbol{\xi}) - \boldsymbol{F}(s,\boldsymbol{\xi_0})\| < 2\varepsilon$$

whenever $\|\boldsymbol{\xi} - \boldsymbol{\xi}_0\| < \eta_1$ and $|t - s| < \eta_2$. Thus \boldsymbol{F} is continuous on $[c, d] \times U$.

We will now prove (a), (b) and (c) for every $\delta \in \mathbf{D}$, i.e. for every δ such that $0 < \delta < e^{-L(d-c)}\delta_1$. Using the description of U_{δ} and \overline{U}_{δ} in (2.1.3) and (2.1.4) we see that if $\delta' < \delta''$ then $\overline{U}_{\delta'} \subset U_{\delta''}$, since $[c, d] \times \overline{B}(\mathbf{0}, \delta') \subset [c, d] \times B(\mathbf{0}, \delta'')$.

Let $\delta_m = e^{-L(d-c)}\delta_1$. Note that $U = U_{\delta_m}$. Pick $\delta \in \mathbf{D}$. It is clear that δ satisfies parts (a) and (b) of the theorem since $U_{\delta} \subset U$. It remains to prove (c). Since $\delta < \delta_m$, from the observations in the last paragraph, $\overline{U}_{\delta} \subset U$. Thus \mathbf{F} is defined and continuous on $[c, d] \times \overline{U}_{\delta}$. Since $[c, d] \times \overline{U}_{\delta}$ is compact, \mathbf{F} is uniformly

continuous on it. It follows that \mathbf{F} is uniformly continuous on $[c, d] \times U_{\delta}$. This proves (c) for every $\delta \in \mathbf{D}$.

References

- [A1] V. I. Arnold, Ordinary Differential Equations, translated by Richard A. Silverman, MIT Press (also Prentice-Hall, India), Cambridge, MA, U.S.A., 1973.
- [A2] V. I. Arnold, Ordinary Differential Equations, Third Edition, translated by Roger Cooke, Universitext, Springer-Verlag, Berlin, 2006.
- [CL] E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955.