
LECTURE 20

Date of the Lecture: March 22, 2021

As always, K ∈ {R, C}.
The symbol � is for flagging a cautionary comment or a tricky argument. It

occurs in the margins and is Knuth’s version of Bourbaki’s “dangerous bend sym-
bol”.

An n-tuple (x1, . . . , xn) of symbols (xi not necessarily real or complex numbers)
will also be written as a column vector when convenient. Thus

(x1, . . . , xn) =

x1...
xn

 .
A map f from a set S to a product set T1 × · · · × Tn will often be written as

an n-tuple f = (f1, . . . , fn), with fi a map from S to Ti, and hence, by the above
convention, as a column vector

f =

f1...
fn

 .
(See Remark 2.2.2 of Lecture 5 of ANA2.)

The default norm on Euclidean spaces of the form Rn is the Euclidean norm ‖ ‖2
and we will simply denote it as ‖ ‖. The space of K-linear transformations from
Kn to Km will be denoted HomR(Kn,Km) and will be identified in the standard
way with the space of m × n matrices Mm,n(K) and the operator norm1 on both
spaces will be denoted ‖ ‖◦. If m = n, we write Mn(R) for Mm,n(R), and L(Kn)
for HomK(Kn, Kn).

Note that (x1, . . . , xn) 6= [x1 . . . xn]. Each side is the transpose of the other.�

1. Basic notations and conventions

1.1. Throughout this lecture we assume that v : Ω→ Rn is a continuous function
which is Lipschitz in x with Lipschitz constant L on a domain2 Ω contained in
R×Rn. Our interest is in the behaviour of solutions of the differential equation

(∆)
.
x = v(t, x)

as we vary the initial conditions, i.e. the initial time point and the initial state. To
that end, for a point ξ = (τ,a) in Ω, the symbol ϕ(τ,a) (or simply ϕξ) will denote

the unique solution to initial value problem (∆)(τ,a) below.

(∆)(τ,a)
.
x = v(t,x), x(τ) = a.

We might often write (∆)ξ for (∆)(τ,a). For ξ = (τ,a) ∈ Ω, J(ξ) = J(τ, a) will
denote the maximal interval of existence for (∆)(τ,a).

1See §§2.1 of Lecture 5 of ANA2.
2i.e. a non-empty connected open subset of Rn
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2. Continuity with respect to initial conditions

We know from the remark in §§§ 1.1.2 of Lecture 6 as well as Theorem 1.1.2 (a)
of Lectures 17 and 18 (when v is C 1) that given a point ξ0 = (τ0,a0) ∈ Ω, we
have an open neighbourhood W of ξ0 in Ω and a positive number b such that for
every ξ = (τ,a) ∈ W , (τ − b, τ + b) is an interval of existence for the IVP (∆)ξ.
By shrinking W if necessary, we may assume W = (τ0 − ε, τ0 + ε)×B(a0, r) with
ε < b/2. In such a case, we have a map F : (τ0 − ε, τ0 + ε) ×W → Rn given by
F (t, ξ) = ϕξ(t). One can ask if this map is continuous, or if it is C 1. In this section

we will prove that F is continuous. Later we will show that it is C 1 if v is C 1. We
remind the reader that in this lecture v is Lipschitz in x.

2.1. For the rest of this section, we fix a solution ϕ : [c, d]→ Ω of the differential
equation (∆). As in (3.1.1) of Lecture 19 for each δ > 0, set

(2.1.1) Uδ = {(τ,a) ∈ Rn+1 | τ ∈ [c, d], ‖a−ϕ(τ)‖ < δ}.
There are other descriptions of Uδ. Here are two more

(2.1.2) Uδ = {(τ,a+ϕ(τ)) ∈ Rn+1 | τ ∈ [c, d], ‖a‖ < δ}.
Finally, if f : [c, d]×Rn → [c, d]×Rn is the homeomorphism (t,x) 7→ (t,x+ϕ(t)),
and Rδ the rectangle [c, d]×B(0, δ), then

(2.1.3) Uδ = f(Rδ).

Note that the closure of Rδ in [c, d]×Rn is Rδ := [c, d]×B(0, δ), whence, since
f is a homeomorphism,

(2.1.4) U δ = f(Rδ).

2.1.5. According to [Lecture 19, Lemma 3.1.2] there is a δ1 such that the closure
U δ1 of Uδ1 in Rn is a compact subset of Ω. We will show that there is a δ with
0 < δ < δ1 such that [c, d] is an interval of existence for (∆)ξ for every ξ = (τ, a)
in Uδ. Note that this is not the same as the assertion in 1.1.2 of Lecture 6 though
it is closely related to that.

Theorem 2.1.6. With the above notations, there exists a δ > 0, such that

(a) Uδ ⊂ Ω.
(b) For every ξ = (τ,a) ∈ Uδ the solution ϕξ to (∆)ξ exists on [c, d].
(c) The map (t, τ,a) 7→ ϕ(τ,a)(t) is uniformly continuous on V = [c, d]× Uδ.

Proof. Fix δ1 > 0 as in 2.1.5, i.e. fix δ1 such that U δ1 is a compact subset in Ω.
Let D = {δ | 0 < δ < e−L(d−c)δ1}. We will show that (a), (b), and (c) are true for
every δ in D.

Let

U =
⋃
δ∈D

Uδ.

For ξ ∈ U , the fundamental estimate (with ε1 = ε2 = 0) yields

‖ϕ(t)−ϕξ(t)‖ < δ1

for all t ∈ [c, d] ∩ J(ξ), where, as agreed upon, J(ξ) is the maximal interval of
existence associated with (∆)ξ. In other words, (t,ϕξ(t)) ∈ Uδ1 for all t in the

intersection J(ξ)∩ [c, d]. Since (t,ϕξ(t)) must exit the compact set U δ1 , the above
2
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Figure 1. Uδ1 is the region between the two brown curves in the
figure on the right

inequality forces it to exit at {c} ×Rn and {d} ×Rn. Thus [c, d] ∩ J(ξ) = [c, d],
i.e. [c, d] is an interval of existence for ξ for every ξ ∈ U .

Let F : [c, d]× U → Rn be the map given by the formula

F (t, τ,a) = ϕ(τ,a)(t)

for (t, τ,a) ∈ [c, d]× U . Since U is a subset of Uδ1 which is compact, v is bounded
in U . Let M <∞ be an upper bound for ‖v‖ in U .

Let ξ0 = (τ0,a0) ∈ U and let us examine the continuity of F at (s, ξ0) ∈
[c, d]×U . Since U is open in [c, d]×Rn, there exists a rectangle W = [α, β]×B(a0, r)
in U containing ξ0, and hence, for every ξ = (τ,a) ∈W , the line segment [α, β]×{a}
lies in U ⊂ Ω. Applying [Lecture 19, Lemma 2.1.3], we see that

(†) ‖a−ϕ(τ,a)(τ0)‖ ≤ M
L (eL|τ−τ0| − 1) (ξ = (τ,a) ∈W ).

We claim that ϕξ → ϕξ0 , uniformly on [c, d], as ξ → ξ0. We may assume that ξ
approaches ξ0 through points in W . By the fundamental estimate (used twice) we
have

(‡)

‖ϕξ0(t)−ϕξ(t)‖ ≤ ‖ϕξ0(τ0)−ϕξ(τ0)‖eL(d−c)

= ‖a0 −ϕ(τ,a)(τ0)‖eL(d−c)

≤ ‖a0 − a‖eL(d−c) + ‖a−ϕ(τ,a)(τ0)‖eL(d−c)

≤ ‖a0 − a‖eL(d−c) + M
L (eL|τ−τ0| − 1)eL(d−c)

for ξ ∈ W . The last inequality is from (†). The expression in the bottom line,
namely h(ξ) = ‖a0 − a‖eL(d−c) + M

L (eL|τ−τ0| − 1)eL(d−c), is a continuous function
of ξ = (τ, a) which is independent of t ∈ [c, d]. Moreover, h(ξ) → 0 as ξ → ξ0.
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This means ϕξ → ϕξ0 , uniformly on [c, d], as ξ → ξ0. In greater detail, given
ε > 0, we can find η > 0 (independent of t ∈ [c, d]) such that h(ξ) < ε whenever
‖ξ − ξ0‖ < η. Thus, from (‡), ‖ϕξ0(t)−ϕξ(t)‖ < ε for all t ∈ [c, d], whenever
‖ξ − ξ0‖ < η. This proves the assertion of uniform convergence.

Figure 2.

We now show that F : [c, d] × U → Rn is continuous. Let ϕ0 = ϕξ0 . Since ϕξ
converges uniformly on [c, d] to ϕ0 as ξ → ξ0, therefore given ε > 0 we can find
η1 > 0 such that

‖ϕξ(s)−ϕ0(s)‖ < ε (s ∈ [c, d])

whenever ‖ξ − ξ0‖ < η1. Now ϕ0 is uniformly continuous on the compact set [c, d],
and hence there exists η2 > 0 such that

‖ϕ0(t)−ϕ0(s)‖ < ε

whenever |t− s| < η2. Since

‖F (t, ξ)− F (s, ξ0)‖ = ‖ϕξ(t)−ϕ0(s)‖ ≤ ‖ϕξ(t)−ϕ0(t)‖+ ‖ϕ0(t)−ϕ0(s)‖,
it follows that

‖F (t, ξ)− F (s, ξ0)‖ < 2ε

whenever ‖ξ − ξ0‖ < η1 and |t− s| < η2. Thus F is continuous on [c, d]× U .
We will now prove (a), (b) and (c) for every δ ∈ D, i.e. for every δ such that

0 < δ < e−L(d−c)δ1. Using the description of Uδ and U δ in (2.1.3) and (2.1.4) we
see that if δ′ < δ′′ then Uδ′ ⊂ Uδ′′ , since [c, d]×B(0, δ′) ⊂ [c, d]×B(0, δ′′).

Let δm = e−L(d−c)δ1. Note that U = Uδm . Pick δ ∈ D. It is clear that δ
satisfies parts (a) and (b) of the theorem since Uδ ⊂ U . It remains to prove (c).
Since δ < δm, from the observations in the last paragraph, Uδ ⊂ U . Thus F is
defined and continuous on [c, d]× Uδ. Since [c, d]× Uδ is compact, F is uniformly
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continuous on it. It follows that F is uniformly continuous on [c, d] × Uδ. This
proves (c) for every δ ∈ D. �
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