Jan 6, 2021

Recall that the menin interest of this course is an IVP (initial value problem) of the following kind: (1) $\vec{\chi} = \vec{v} (t_{x}, \vec{z})$, $\vec{z} (t_{y}) = \vec{\chi}$ Here, I varies in an open interval I (called the time space) in R, and Z' varies in an open subset I in R" (I is called the phone space or the state space) and $\vec{v}: I \times \Omega \longrightarrow \mathbb{R}^{\sim}$ is a suitable map (-usually at least e' in 2). Also to E I and To E I are fixed points called the initial time point and the initial state. A volution of (1) is a pair (J, p) where J is an open interval containing to, and $\vec{\phi} \colon \mathcal{I} \longrightarrow \mathcal{\Omega}$ is a diffile map such that $\vec{\phi}(t) = \vec{v}(t, \vec{\phi}(t)), \quad t \in J, \quad \vec{\phi}(t_0) = \vec{w},$ The interval J is called an interval of existence.

Lecture 2

Notations; At in Analysis I,
$$\mathbb{P}^{n}$$
 consists of column
vectors. We destinguish between $[x_{1} \cdots x_{n}] = \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}^{T}$
and (x_{1}, \dots, x_{n}) .
 $\vec{v} = \begin{bmatrix} v_{1} \\ \vdots \\ v_{w} \end{bmatrix}, \quad \vec{x} = \begin{bmatrix} x_{1} \\ \vdots \\ x_{n} \end{bmatrix}$
 $= (v_{1}, \dots, v_{n}) = (x_{1}, \dots, x_{n})$

Suppose
$$(J, Q)$$
 is a solution of (1),
Consider $\overline{\mathcal{V}}$ grien by
 $\overline{\mathcal{V}}(t) = (t, Q, (t), ..., Q_n(t))$

where
$$(p_{1},...,p_{u}) = \vec{p}$$
.
Let $\hat{\Omega} = I \times \Omega$ and let
 $\vec{w}^{2} : \hat{\Omega} \longrightarrow \mathbb{P}^{n \neq 1}$

be the map

$$(s, \overline{x}) \longmapsto (1, \overline{v}(s, \overline{x})) = (1, \overline{v}(s, x), ..., \overline{v}(s, x))$$

$$(1, \overline{v}(s, \overline{x})) = (1, \overline{v}(s, x), ..., \overline{v}(s, x))$$

Consider the WP
(2)
$$\overrightarrow{\xi} = \overrightarrow{\psi} (\overrightarrow{\xi}), \quad \overrightarrow{\xi} (t_0) = \begin{bmatrix} t_0 \\ \overrightarrow{y_0} \end{bmatrix}$$

Note that (a) (2) is antonomous, i.e. the night eite does not depend upon I (b) I is a solution of (2). (c) Griven a colution I ((2) say 𝒫= (𝔄, 𝔄, ..., 𝔄) then No(t) = t, and if qi := Vi, then q = (dis.., du) is a solution of (1) Recall that an antonomous IVP is of the pon $\vec{x} = \vec{V}(\vec{x})$, $\vec{z}(t_0) = \vec{x}$, where $\vec{v}: \Omega \longrightarrow \mathbb{R}^n$ is a function. For all prantical punpous, I can be taken to be R. $\vec{\nabla}: \mathbb{R}_{K}\Omega \longrightarrow \mathbb{P}^{n} \quad \vec{\nabla} (\mathcal{H}_{x}\vec{x}) = \vec{\sigma}(\mathcal{L}).$ Since the study of (1) amonto to the study of (2), we can retired onesclue to antonorus DE's, re. DE's of the form $\vec{x} = \vec{v}(\vec{x})$, $\vec{z}(t_{v}) = \vec{x}$. Autonomono eque when n=1: Consider the autonomous IVP (*) $\dot{\chi} = v(\chi), \quad \chi(\chi_0) = \pi_0$

where $v: \Omega \longrightarrow P$ is a C'map on an open

interval D A R, no is a fixed point in D, and
to a time point.
The any function f, Don (f) will denote its domain.
I. time reveal: Let
$$\varphi: (a,b) \longrightarrow D$$
 be a solution $\varphi(b)$.
Recall, thus uniplies to $e(a,b)$. Then the mag
 $\varphi^{tr} \cdot (2t_0 - b, 2t_0 - a) \longrightarrow D$
grien by
 $\varphi^{tr} (t) = \varphi(2t_0 - b), 2t_0 - b = t = 2t_0 - a$
is a solution by
 $\varphi^{tr} (t) = -\psi(n), t = 2t_0 - b = t = 2t_0 - a$
is a solution by
 $\varphi^{tr} (t) = -\psi(n), t = 2t_0 - b = t = 2t_0 - a$
The assention is easy to verify.
The lift $\varphi(t) = -\psi(n) = x_0$ and
the map φ^{tr} is called the time rowship $\varphi(t)$.
2 State rowshift is called the time rowship $\varphi(t)$.
Sil $-\Omega = \{x \in \mathbb{R} \mid -x \in D\}, Let$
 $\psi^{st} (x) = -\psi(-x), Then \psi^{str} is $\varphi(t) = -\psi(t), t = (a,b)$.
The two $\varphi^{tr} (t) = -\psi(t), t = (a,b)$.
The two $\varphi^{tr} (t) = -\psi(t), t = (a,b)$.
The two $\varphi^{tr} (t) = -\psi(t), t = (a,b)$.
Then $\varphi^{tr} (t) = -\psi(t), t = (a,b)$.$

Regular and singular strates: A state (a.k.a. phase) & E-Q is said to be regular ing v(r) = 0. Oltrawise it is called stationary or singulas, re. x is stationary (or singular) if r(x)=0. Ω^{req} = {x∈ Ω | v(x) ≠ 0 } ← Open set of Ω / ℝ. Quing = {xe 2 | v(x) = 0} ← closed subset of S

→ P. T. O.

Suppose to
$$\in D^{r4}$$
. Let
 $S_{max} = (2m, 2M) \subset D^{r4}$
be the largest interval containing to relie his in D^{r4} .
 f_{re} often words Smax is the connected component of the
open set D^{r4} containing to.
denice V is markene vanishing on S_{max} , it has
a constant singer on it. Let
 $0: Smax = (2m, 2M) \longrightarrow P$.
be the function defined by
 $\theta(x) = t_0 + \int \frac{x}{x_0} \frac{dz}{v(z)}, z \leq Smax$.
durice $r(\xi)$ has a constant sign for $\frac{z}{2} \in Smax$, θ is
strictly monstone, and hence one-ti-one. Moneover
 θ is continuous (in fact t^{2}). Let
 $\theta(Smax) = (w_{-}, w_{+}) =: Tmax$.
Let $\theta_{max}: Tmax \longrightarrow Smax$ be dive function theorem
shows that $\theta_{max}(w) = t$.
 $\theta(\varphi_{max}(w)) = t$.

