LECTURE 19

Date of the Lecture: March 17, 2021

As always, K € {R, C}.

The symbol @ is for flagging a cautionary comment or a tricky argument. It
occurs in the margins and is Knuth’s version of Bourbaki’s “dangerous bend sym-
bol”.

An n-tuple (z1,...,z,) of symbols (z; not necessarily real or complex numbers)
will also be written as a column vector when convenient. Thus

T
(X1, . Tn) =
Ty

A map f from a set S to a product set T} x --- x T}, will often be written as
an n-tuple f = (f1,..., fn), with f; a map from S to T}, and hence, by the above
convention, as a column vector
fi
r=|:
fn
(See Remark 2.2.2 of Lecture 5 of ANA2.)

The default norm on Euclidean spaces of the form R™ is the Euclidean norm || ||2
and we will simply denote it as || ||. The space of K-linear transformations from
K" to K™ will be denoted Homg (K™, K™) and will be identified in the standard
way with the space of m x n matrices M,, ,,(K) and the operator norm' on both
spaces will be denoted || ||o. If m = n, we write M, (R) for M,, ,(R), and L(K")
for Homg (K™, K").

Note that (z1,...,%,) # [21... z,]. Each side is the transpose of the other.

1. Basic notations and conventions

1.1. Throughout this lecture we assume that v: Q — R"™ is a continuous function
which is Lipschitz in @ with Lipschitz constant L on a domain? € contained in
R x R™. Our interest is in the behaviour of solutions of the differential equation

(A) T =v(t )

as we vary the initial conditions, i.e. the initial time point and the initial state. To
that end, for a point § = (7, a) in €, the symbol ¢, o) (or simply p¢) will denote
the unique solution to initial value problem (A),, 4) below.

(A)(r,a) T=v(tx), x(r)=a.

We might often write (A)¢ for (A)(rq). For & = (1,a) € Q, J(§) = J(7, a) will
denote the maximal interval of existence for (A)(,, 4).

1See §82.1 of Lecture 5 of ANA2.
%ie. a non-empty connected open subset of R™
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2. Estimates
Much of the material in the rest of this lecture is taken from [CL].
2.1. The fundamental estimate. Recall the following definition from HW 4:

Definition 2.1.1. We say that ¢ is an e-approximate solution of (A) on an interval
T if (t,4(t)) is in the domain of v for all t € I and

le® - vt o)< e

Next suppose ¢ and 1) are €' functions on an interval I, with ¢ an €;-approximation
of & = v(t,x) on I and ¥ an ex-approximation of & = v(¢,x) on I. Suppose further
that at a specified point 7g in I we have ||¢(709) — ¥ (70)|| < . From Problem 8 of
HW 4 we have we have the following fundamental estimate:

(2.1.2) Hgo(t) - ¢(t)H < gellt=mol 4 # (eL‘t—TO‘ - 1) (tel).

The fundamental estimate can be used to give the following estimate.

Lemma 2.1.3. Suppose v is bounded and M < oo an upper bound for v and
€ = (1, a) a point in Q. Let [c,d] be an interval of existence for (A)g such that
[e,d] x {a} C Q. Then

M —T
Hcpg(t) - aH < f(ew | 1) (t € [e,d)).
Proof. Let 1: [¢,d] — R™ be the constant map ¥ = a. Then for t € [¢, d]

[ (t) —v(t, P (0)l| = [lo(t, ()] < M.
Thus 1 is an M-approximate solution of (A). On the other hand ¢, is an exact
solution (A). By the fundamental estimate, with ¢; = M, e = 0, and § = 0, we
get
lpe(t) — all = o) —p(t)]| < FE(eH=1 - 1)
for every t € [c,d]. O

3. Subsets of 2

3.1. For the rest of this section, we fix a solution ¢: [¢, d] — £ of the differential
equation (A). For each ¢ > 0, let

(3.1.1) Us ={(r,a) e R"" | 7 € [¢,d], |la — ¢(7)| < 6},

Lemma 3.1.2. There exists 6; > 0 such that the closure Us, of Us, in R™ is a
compact subset of Q.

Proof. The map f: [¢,d] x R™ = [¢,d] x R™ given by

f(t,a) = (t,a+ (1))
is a homeomorphism. Indeed, if 71: R x R® — R is the projection (¢, a) — t
and m3: R x R™ — R™ the projection (¢,a) — a, then f = (7,72 + pom), and
hence is continuous. It has an inverse g given by g(t, &) = (¢,€ — ¢(t)), and since
g = (71, T2 —poms), it too is continuous. Thus f is a homeomorphism. This means
Us = f([c,d] x B(0,68)) an open subset of [c,d] x R™ for every § > 0. (See Figure
1 below.)
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Next let ' = f~1(QN([c,d] x R™)). Then Q' is open in [¢,d] x R™ and contains
[c,d] x{0}. If d(t, @) is the distance from (¢, a) to the closed set ([, d] x R™) N\ € of
[e, d] x R™, then d is continuous on [¢,d] X R™. Since K = [c¢, d] x {0} is compact, the
infimum of d on K is a positive number 7. Pick §; < 1. Then [c,d] x B(0,d;) C .
It follows that Us, (which equals f([c,d] x B(0,6;))) is compact and contained in
QN ([e.d x R™). O

3.1.3. We will show that there is a § with 0 < § < 47 such that [c, d] is an interval
of existence for (A)g for every £ = (7, a) in Us. Note that this is not the same as
the assertion in 1.1.2 of Lecture 6 though it is closely related to that.
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FI1GURE 1. Us, is the region between the two brown curves in the
figure on the right

The next lecture we will prove the following:

Theorem 3.1.4. With the above notations, there exists a 6 > 0, such that
(a) Us C Q.

(b) For every & = (7,a) € Us the solution ¢, to (A)e exists on [c,d].

(c) The map (t,7,a) — @(; q)(t) is uniformly continuous on V = le,d] x Us.

Proof. See the next lecture.
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