
LECTURES 17 AND 18

Dates of the Lectures: March 8 and 10, 2021

As always, K ∈ {R, C}.
The symbol � is for flagging a cautionary comment or a tricky argument. It

occurs in the margins and is Knuth’s version of Bourbaki’s “dangerous bend sym-
bol”.

An n-tuple (x1, . . . , xn) of symbols (xi not necessarily real or complex numbers)
will also be written as a column vector when convenient. Thus

(x1, . . . , xn) =

x1...
xn

 .
A map f from a set S to a product set T1 × · · · × Tn will often be written as

an n-tuple f = (f1, . . . , fn), with fi a map from S to Ti, and hence, by the above
convention, as a column vector

f =

f1...
fn

 .
(See Remark 2.2.2 of Lecture 5 of ANA2.)

The default norm on Euclidean spaces of the form Rn is the Euclidean norm ‖ ‖2
and we will simply denote it as ‖ ‖. The space of K-linear transformations from
Kn to Km will be denoted HomR(Kn,Km) and will be identified in the standard
way with the space of m × n matrices Mm,n(K) and the operator norm1 on both
spaces will be denoted ‖ ‖◦. If m = n, we write Mn(R) for Mm,n(R), and L(Kn)
for HomK(Kn, Kn).

Note that (x1, . . . , xn) 6= [x1 . . . xn]. Each side is the transpose of the other.�

1. Compact Manifolds

1.1. Intervals of existence on compact manifolds. Recall from the remark
in 1.1.2 of Lecture 6 that if Ω is an open subset of Rn+1, v : Ω → Rn a locally
Lipschitz map, then for every point (τ, a) in Ω we have an open neighbourhood
W(τ,a) in Ω of (τ, a) and a positive number b = b(τ,a) such that (τ − b, τ + b) is an
interval of existence for the initial value problem

.
x = v(t, x), x(θ) = y for every

(θ, y) in W(τ,a). Since this is a local statement, it clearly holds for manifolds. We
state this (and more) formally below.

1See §§2.1 of Lecture 5 of ANA2.
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Theorem 1.1.1. Let M be a manifold of dimension n, Ω an open subset of R×M ,
and v : Ω→ T (M) a C 1 map such that the diagram

T (M)

$

��
Ω

v
<<yyyyyyyy
// M

commutes where the horizontal arrow at the bottom is the second projection.

(a) For every point (τ, a) ∈ Ω ⊂ R×M , we have an open neighbourhood W(τ,a) of
(τ, a) in Ω and a positive real number b = b(τ,a) such that for each point (θ, y)
in W(τ,a) the interval (τ − b, τ + b) is an interval of existence for the initial
value problem

.
x = v(t, x), x(θ) = y.

(b) Let K be a compact subset of Ω. There exists a positive real number bK (de-
pending only on K and v) such that for every (τ, a) ∈ K, the open inter-
val (τ − bK , τ + bK) is an interval of existence for the initial value problem
.
x = v(t, x), x(τ) = a.

(c) Let (t0, a0) ∈ Ω and let ϕ0 : J →M be the solution of the initial value problem
.
x = v(t, x), x(t0) = a0 with J = (ω−, ω+) the maximal interval of existence
for the IVP. Then the variable point (t, ϕ0(t)) leaves every compact set K in
Ω as t ↑ ω+ and t ↓ ω−.

Proof. Part (a) is a local statement, and hence we may assume M is an open subset
of Rn. Then part (a) follows from 1.1.2 of Lecture 6. We are of course using the fact
that for any co-ordinate chart (U,ψ) of M , the corresponding DE on ψ(U) ⊂ Rn

is of the form
.
y = w(t,y) with w a C 1 map, whence locally Lipschitz.

To prove part (b), we use part (a) to cover K by W(t,z) as (t, z) varies over K,

and extract a finite subcover {W(ti,zi)}ki=1. Let bK = min{b(ti,zi) | i = 1, . . . , k}. It
is clear that (τ − bK , τ + bK) is an interval of existence for each of the initial value
problems

.
x = v(t, x), x(τ) = a as (τ, a) varies in K.

The proof of (c) is identical to the one given in the last paragraph of the proof of
Theorem 1.1.1 of Lecture 6. In other words, if τ ∈ (ω+− bK , ω+) then (τ, ϕ0(τ)) /∈
K, and likewise, when τ ∈ (ω−, ω− + bK) then (τ, ϕ0(τ)) /∈ K. If either of the
intervals (ω+ − bK , ω+) or (ω−, ω− + bK) is empty (i.e. if either ω+ = ∞ or ω− =
−∞) then again the argument given in loc.cit. stands. For example, if ω+ =∞, then
set τM equal to the maximum of τ such that (τ,ϕ0(τ)) ∈ K. Then ω− < τM <∞
since K is compact, and (τ,ϕ0(τ)) /∈ K for τ > τM . A similar argument shows
that when ω− = −∞, there exists τm ∈ (−∞, ω+) such that (τ,ϕ0(τ)) /∈ K for
τ < τm. �

The following corollary will be the guiding light for what we do in the remaining
part of this lecture and for most of the next lecture.

Corollary 1.1.2. Let M be a compact n-dimensional manifold and v : M → T (M)
a C 1 vector field on it. Let a ∈ M . Then for each p ∈ M , R is an interval of
existence of the autonomous initial value problem

.
x = v(x), v(x) = p.

Proof. Let Ω = R×M and set K = {0} ×M . Then K is a compact subset of Ω.
By part (b) of the theorem, we have a positive real number bK such that for every
p ∈ M , the interval (−bK , bK) is an interval of existence for

.
x = v(x), x(0) = p.

By Problem 7 of the mid-term exam (whose solutions are here) we are done (take
ε = bK). �.
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2. The logistic equation

We will look at the autonomous differential equation, the so called logistic equa-
tion, which is

(1)
.
y = y(1− y)

The equilibrium solutions are y ≡ 0 and y ≡ 1. Let us take our initial time point
to be t0 = 0.

2.1. If we consider the IVP associated to (1), with initial conditiony(0) = y0,
where y0 is not an equilibrium state, i.e., y0 /∈ {0, 1}, then from general theory we
know that a solution ϕ(t) cannot lie in {0, 1} for any time point t in its domain.
Indeed, if ϕ(t1) ∈ {0, 1} for some t1 ∈ R, then by the uniqueness of the solution
(using the fact that y 7→ y(1 − y) is a C 1 function) to the IVP, y′ = y(1 − y),
y(t1) = y1, we see that ϕ(t) ∈ {0, 1} for all t ∈ R, contradicting the fact that
ϕ(0) = y0 /∈ {0, 1}.

We assume now that y0 /∈ {0, 1}. The DE (1) is solved formally by noting that

the equation is equivalent to dy
y(1−y) = dt, and that

1

y(1− y)
=

{
1

y
− 1

y − 1

}
.

From this one sees that

t = ln
∣∣∣ y

y − 1

∣∣∣− ln
∣∣∣ y0
y0 − 1

∣∣∣
= ln

∣∣∣ y
y0

y0 − 1

y − 1

∣∣∣
Let C be one of the three connected components of R r {0, 1}, namely (−∞, 0),
(0, 1), and (1,∞). From our arguments above, if y0 ∈ C, then y(t) ∈ C for all t in
the maximal interval of existence of

.
y = y(1 − y) with y(0) = y0. Here of course

y(t) is the solution of this IVP. It follows quite easily from this that y
y0

is positive,

as is y0−1
y−1 . Thus

t = ln

{
y0 − 1

y0

y

y − 1

}
.

Inverting we get

(2.1.1) y(t) =
y0e

t

y0et − y0 + 1
, (t ∈ J(y0))

where J(y0) is the maximal interval of existence for solutions of (1) satsfying y(0) =
y0. We point out the formula (2.1.1) is true even when y0 ∈ {0, 1}, as can be checked
by directly plugging in the values 0 and 1 for y0 in the formula.

It is easy to see, by direct calculations, that the RHS of (2.1.1) gives a solution
for our DE at all time intervals on which the denominator never vanishes.

If the connected component C of Rr{0, 1} we are working over is (0, 1) we note
that the denominator on the RHS of (2.1.1) is never zero. Indeed the denominator
y0e

t− y0 + 1 is an increasing function of t and its limit as t ↓ −∞ is 1− y0, whence
y0e

t − y0 + 1 > 1− y0 > 0 for all t ∈ R. Thus J(y0) = R in this case.
If C is one of the other two components, i.e. one of (−∞, 0) or (1,∞), then the

equation y0e
t − y0 + 1 = 0 has a solution, namely t = t∞ where t∞ = ln{y0−1y0

}.
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If y0 > 1, then it is easy to see that 0 < y0−1
y0

< 1, and if y0 < 0 then y0−1
y0

> 1.

This means t∞ < 0 when y0 > 1 and t∞ > 0 when y0 < 0. It follows that
J(y0) = (t∞,∞) if y0 > 1 and J(y0) = (∞, t∞) when y0 < 0.

2.2. The case y0 > 1. Here is the graph of y(t) when y0 = 20/19.

The purple vertical line on the left is at t = − ln 20. The red lines are the t and y
axes (the t-axis is horizontal) and the green line is the line y = 1. The graph of y
is blue coloured. Note that the solution blows up to infinity as t → t∞ = − ln 20
from the right, the solution approaches the equilibrium y = 1 as t→∞. To left of
t∞, the graph of the “solution” looks like the graph below, but, one cannot reach it
from our initial phase (travelling backwards in time) of y(0) = y0 = 20/19. So we
do not regard it as a solution of our IVP, even though it is a solution to the DE.

2.3. The case 0 < y0 < 1. Here are graphs of the above with y0 = 1/3, 1/2, 2/3,
and 3/4.

As before, the red lines are the axes, and the green line is the line y = 1.

2.4. The case y0 < 0. Cutting to the chase, for y0 = −1/19, the graph (the orange
curve) is as follows (the purple line being t = t∞, i.e., t = ln 20.)
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As before, there is a formal solution beyond t = ln 20 but that cannot be considered
as part of the solution of our IVP with y0 = −1/19. For completeness, here is how
that part looks:

The logistic equation extended to the circle

The 3D graphics below might help you understand the role of compactness in
autonomous systems. And help you appreciate manifolds (versus open sets in Rn).

2.5. The circle as a manifold. We can regard the standard unit circle P in
R2 as differential manifold in many ways. To begin with, it is a level curve of
f(x, y) = x2+y2, and on the unit circle, it is clear that the rank of f ′(x, y) = (2x, 2y)
is 1. Hence by our now familiar technique (using the implicit function theorem), the
unit circle is indeed a manifold. Once can also view it as the manifold obtained by
gluing two copies of R along Rr {0} via the diffeomorphism y 7→ y−1 on Rr {0}.
The descriptions are equivalent as you can check by yourself. In this section we will
use the second description.

In greater detail, for us P has an open cover U = {U, V }, where U = Pr {N},
V = P r {S}. Here N is the “north pole” (0, 1) and S is the “south pole” (0,−1).
We have homeomorphisms ψU : U → R and ψV : V → R and the transition function
is the diffeomorphism R r {0} → R r {0} given by y 7→ z = y−1.

2.6. The logistic equation on the unit circle. Let w0 : R → R be the map
w0(y) = y(1 − y). This is of course C 1. Regarding w0 as a vector field on R,
v should be interpreted as the derivation y(1 − y) d

dy . Under the transition map
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y 7→ z = y−1 this derivation transforms as follows:

y(1− y)
d

dy
= y(1− y)

dz

dy

d

dz

= − 1

y2
y(1− y)

d

dz

= z2y(y − 1)
d

dz

= (1− z) d

dz
.

Thus, the restriction of the differential equation
.
y = y(1−y) to Rr{0} transforms

under the transition function ψV ◦ψ
−1
U : R r {0} → R r {0} to the differential

equation
.
z = 1 − z. This can also be seen in the following way (the naive high-

school calculus substitution method): dy
dt = y(1 − y) is (under the substitution

y = z−1) the same as the equation −z−2 dz
dt = y(1 − y), and this simplifies to

dz
dt = z2y(y − 1), i.e. dz

dt = 1− z. Let us denote the vector field (1− z) d
dz on R by

w1.
The upshot is this: We have a vector field v0 on U and v1 on V obtained by

transporting the vector fields w0 and w1 to U and V respectively via ψ−1U and ψ−1V
and v0 and v1 glue on P to give us a C 1 vector field v on P. Now P is compact.
So we know, via Corollary 1.1.2, that the intervals of existence associated with the
autonomous DE

.
x = v(x) are R. Here are the graphics illustrating this.

The case y0 > 1. Here is the solution curve of our original DE when y0 = 20/19
(the blue curve):

The purple vertical line on the left is at t = − ln 20. The red lines are the t and
y axes (the t-axis is horizontal) and the green line is the line y = 1. The vertical

asymptote (the purple line) that you see is t = − ln 20. The graph y(t) = 20et

20et−1
“continues” to the left of the the break, and the full graph is:

The fact that the process with initial state y0 = 20/19 cannot be continued back-
wards is not unrelated to the fact that [1,∞) is non-compact. If we replace the
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phase space with the circle P the solution makes sense everywhere. The extended
phase space P×R is a cylinder, and the integral curve is a curve on the cylinder.
Here are three views of this integral curve on the extended phase space:

The blue dot is the point on the extended phase space corresponding to (− ln 20,∞),
∞ a point on P. The colour code is as before. The old y-axis is now the red circle,
and the old t-axis is the red line on the far side of the cylinder. The green line
corresponds to the old equilibrium integral curve y ≡ 1.

Here is a second view. The postive direction on the t-axis is to the left, because
of the way we are viewing the cylinder, namely from the outside.

An inside view of the cylinder may be interesting. The blue dot is once again
the point at which the integral curve passes through “infinity”.

7



We had similar graphs for y0 ∈ (0, 1) and y0 < 0. The graphs we had were
y0 = 1/3, 1/2, 2/3, 3/4 (for y0 ∈ (0, 1) as well as y0 = −1/19, Here are the graphs
in one place. The black ones are for the case y0 ∈ (0, 1) and the orange one (along
with its vertical asymptote at t = ln 20), the case where y0 = −1/19.

Here are the 3-D graphs when the phase space is compactified to P. First we
consider the y0 < 0 case. Specifically, the case y0 = −1/19.
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The thick black line is R × {∞} and the point where the integral curve crosses it
is highlighted as an orange dot. The green line, the red line, and the red circle are
as before.

Here is the “inside view” (literally). The line R × {∞} is the black line on the
left. You can see the orange dot on it, where the integral curve crosses it.

Finally, here are the “black curves”, namely the curves occurring when y0 lies
in the interval (0, 1). In our specific examples, the initial phases are 1/3, 1/2, 2/3,
and 3/4. In these cases, the integral curves never touch R× {∞}.
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Note that because of the way R∪{∞} = P has been folded into a circle, the t-axis
(the red line) is such that t increases as we move left. The more traditional view
of the positive t-axis would would be if we turned the picture around. Or viewed
the cylinder from inside (but even here, it depends on which end we peer from).

Here are two inside views, looked at from different ends.
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In the above picture, the axis R× {∞} can be seen on the left as the black line.

3. Change of coordinates

3.1. Push-forwards of vector fields. We have mentioned the obvious fact that
under a diffeomorphism, differential equations transform to equivalent differential
equations. In fact we just computed the transform of

.
y = y(1 − y) on R r {0}

under the diffeomorphism y 7→ y−1. We now do it a little more systematically.
Let Ω be open in Rn and assume Ω = I × V where V is open in Rn. Let

F : V −→∼ W

be a diffeomorphism (at least C 2) where W is open in Rn. Let

G = F−1

Let Ω′ = I ×W . Suppose v : Ω → Rn is C 1. Let w : Ω′ → Rn be the map given
by

(3.1.1) w(t,y) = F ′(G(y))v(t,G(y)).

Note that w is C 1 since F is C 2, whence F ′ is C 1.

Proposition 3.1.2. A map ϕ : I → V on an open interval I is a solution of the
DE

.
x = v(t, x) if and only if ψ := F ◦ϕ is a solution to

.
y = w(t,y).

Proof. Since (F ′)−1(x) = G′(F (x)), it is clear that v(t, x) = G′(F (x))w(t,F (x)),
establishing a symmetry between v and w. We therefore only have to prove one
direction of the proposition. Let ψ = F ◦ϕ where ϕ : I → V is a solution to
.
x = v(t, x) on some open interval I. We have

.
ψ(t) = F ′(ϕ(t))

.
ϕ(t)

= F ′(ϕ(t))v(t, ϕ(t))

= F ′(G(ψ(t)))v(t, G(ψ(t)))

= w(t,ψ(t)).

Thus ψ is a solution of
.
y = w(t, y). �
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3.1.3. In §§ 2.3 of the notes on derivations, the transformation of vector fields under
a change of coordinates is explored. If we regard v as a map I × V → T (V ) such
that $ ◦v is the second projection on I × V , and similarly regard w as a map
I ×W → T (W ) with $◦w the second projection, then, in the notation of loc.cit.,
we have w = F ∗ ◦v. We will use this notation even when regard v and w simply
as maps from Ω and Ω′ to Rn. The “vector field” w is called the push-forward of
v under the diffeomorphism F .

3.2. The rectification theorem. The following very important theorem is called
the rectification theorem or the flow box theorem. In some sense, Isaac Barrow,
Newton’s teacher and the discoverer of the fundamental theorem of Calculus, discov-
ered the rectification theorem, for, substitution as a way of getting anti-derivatives
is really rectification in dimension one. We will prove the rectification theorem later
in the course.

Theorem 3.2.1. Let Ω be a domain in Rn, v a C 1 vector field on Ω and Ωreg the
subset of Ω on which v is non-zerp. Let x0 ∈ Ωreg. Then there is a neighbourhood
U of x0 in Ωreg, a neighbourhood V of 0 ∈ Rn, and a diffeomorphism F : U −→∼ V
such that

F (x0) = 0

and
F ∗v = e1.
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