LECTURE 16

Date of Lecture: March 3, 2021

As always, K € {R, C}.

The symbol @ is for flagging a cautionary comment or a tricky argument. It
occurs in the margins and is Knuth’s version of Bourbaki’s “dangerous bend sym-
bol”.

An n-tuple (21, ...,2,) of symbols (z; not necessarily real or complex numbers)
will also be written as a column vector when convenient. Thus

L1
(T1,...,2p) =
Tn
A map f from a set S to a product set Ty x --- x T;, will often be written as

an n-tuple f = (f1,..., fn), with f; a map from S to T}, and hence, by the above
convention, as a column vector

N1

r=1:
fn

(See Remark 2.2.2 of Lecture 5 of ANA2.)

The default norm on Euclidean spaces of the form R™ is the Euclidean norm || ||2
and we will simply denote it as || ||. The space of K-linear transformations from
K" to K™ will be denoted Homg (K™, K™) and will be identified in the standard
way with the space of m x n matrices M,, ,(K) and the operator norm' on both
spaces will be denoted || [[o. If m = n, we write M,,(R) for M,, ,(R), and L(K™)
for Homg (K™, K™).

Note that (z1,...,2,) # [21 ... z,]. Each side is the transpose of the other.

1. First integrals continued
See also [A1, Chap. 2, §11] for this material.

1.1. Integral hypersurfaces. We are interested in solving
T =v(x)

on a manifold M, where v: M — T(M) is a € vector field, using first integrals.

Since solutions are obtained first locally and then by glueing, we can work locally.
We will therefore (temporarily, until further notice) assume M is an open subset of
R™. In this case, vector notations make sense, and we can write

(1.1.1) & =v(x).
Let the components of v be v;, i =1,...,n,ie.v = (v1, ..., v,),and let g: M - R
be a first integral for v so that Y. | vi% =0on M.

ISee §§2.1 of Lecture 5 of ANA2.
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If I is an open interval of existence for (1.1.1) and ¢: I — M a solution of
(1.1.1), then we claim that go: I — R is constant. Indeed, by the chain rule
(with ¢ = (¢1, ..., ©n)), we have

d "/ dg
— o t } = t ) pi(t
R0} B M EREONEAG

7=

p ( 3g‘ (‘P(t)))vz‘(@(t)) (for ¢ is a solution of (1.1.1))

since g is a first integral for v.
Now suppose ¢ € g(M) so that g~1(c) is non-empty. Consider the level hyper-
surface
S =g c).
Such S are sometimes called integral hypersurfaces for v. Fix p, € S. Let to € R,
and suppose : I — M is a solution of

t=wv(z), ()=
where I is an open interval of existence for the above IVP. Now go¢ is a constant

as we just saw, whence g(¢(t)) = g(¢(to)) = g(py) = cfor all t € I. Thus ¢(t) € S
for all t € I. The conclusion is:

Lemma 1.1.2. Let ¢: I — M be a solution of (1.1.1) and suppose for some time
point to in I, p(ty) € S. Then p(t) € S forallt € I.

1.2. Functionally independent first integrals. Next suppose we have n — 1
first integrals f1,..., fn_1 for v and write f = (f1,..., fn_1): M — R"~! for the
resulting map. We say f1,..., fn—1 are functionally independent on a subset X of
M if
rank(f'(p)) =n — 1, peX.

Theorem 1.2.1. Let M, v, f = (f1,..., fn—1) be as above. Suppose v has no
singular points on M (i.e. v(x) # 0 for every x € M ). Let ¢ be a point on f(M),
Dy a point such that f(p,) = ¢, C the connected component of f~1(c) containing
Do, and suppose rank(f'(p)) = n—1 forallp € C (i.e., f1,..., fa_1 are functionally
independent on C). Let ¢: J — M be the mazimal solution of the IVP

& =v(z), z(to) = Py

Then p(J) = C, i.e. z; = @i(t), i = 1,...,n, t € J is a parameterisation of C,
where @; is the it" component of .

Proof. From Lemma 1.1.2, and the fact that ¢(J) is connected, it is clear that ¢
takes values in C. Indeed, if ¢ = (c1, ..., ¢,—1) and if S; = p~1(¢;), then C is the
connected component of ﬂ;’;lSi containing p,, and we know from Lemma 1.1.2
that ¢ takes values in N?'S;.

We also know, via the Implicit Function Theorem, or more precisely, by the
version of the theorem in problems 5 and 6 of HW 7 of ANA2, that C is a one-
dimensional manifold. Let &7 = {(Uy,, %a)}aex be an atlas for C. Without loss of
generality, we may assume each U, is connected.
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Fix @« € ¥. Let I = ¢4(U,). Then I is an open interval in R. Let ~v: I — U,
be the inverse of v, and as usual, write v = (71, ..., vn). Then z;(A) = v;(A) is
a parameterisation of U, C C over the interval I. Since 1,07y is the identity on I,
by the chain rule it follows that v/(\) # 0 for any X € I.

Next, since ~ takes values in C, we have fo~ is constant on I, and the constant
value is ¢. By the chain rule we therefore have that

Fy =0, (Ael).
On the other hand, we also know that >, _, vkng,; = v(f;) = 0 on M for i =
1,...,n — 1, which implies that f'(z)v(x) = 0 for all € M. Thus both v'(\)
and v(v()\)) are non-zero vectors in the null space of f'(v(\)) for every A in I.
Since the rank of f'(p) is n — 1 for every point of C, the null space of f'(v()\)) has

dimension one for every A € I. It follows that we have non-zero scalars u(\), one
for each A € I, such that

(%) YA =uMNv(y(N), (A€

Let p € ¢(J), and s € J a pre-image of p. There is an index a € ¥ such that
p € U,, and since ¢~ 1(U,) is open and contains s, there is an € > 0 such that
(s—¢,s+¢) C e 1(Uy,). In particular, 1, o makes sense on (s —¢, s +¢). Let ~
and u be as above for this o. For t € (s — ¢, s+ ¢) we have, via the chain rule and
(x) above,

(Yao)'(t) = 1o (p(t))v(¢(t))
1

- mw;(w(t))v'(%(w(t)))

1

- m(waw)’(%(w(ﬂ))

B 1
 u(dale(t)))

which is non-zero. This means that ¥, o is a homemorphism on (s — &, s + €).
Hence ¢ is a local homeomorphism to C. In particular ¢(J) is open in C.
In order to show that ¢(J) = C we claim that it is enough to show the following:

(P) If « € ¥ is such that Uy, Np(J) # 0 then Uy C @(J).

Indeed, suppose (P) is true. In that case, if Uy € ¢(J) then Uy Np(J) = 0. Let
Y ={aeX|Us L))} and let V =J, s Ua. Then o(J) UV = C, and since
V Ne(J) =0, and since C is connected, either ¢(J) or V is empty. Now ¢(J) is
clearly non-empty, and hence V = (), whence C' = ¢(J).

Suppose U, N @(J) # 0. We have to show that U, C ¢(J). As before, let
I =1,(Uy,) so that I is an open interval in R, and as before, let v: I — U, be the
inverse of ¢¥,. Let u: I — R be as in (x). For A* € I neither 4/(\*) nor v(y(\*)) is
zero, and hence there is an index i such that the i*® component of both is non-zero.
By continuity of 4/ and v o~ this property propagates to a neighbourhood I* of \*,
whence u(A) = (v'(A))/(vi;(X)) on I*. This proves that w: I — R is continuous.

Pick p; € UoNep(J). Let t; € J be such that ¢(t1) = p;. Let Ay = ¥, (p;). Let

A
:t1+/ u(y)dy, el
A
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Since u is nowhere vanishing and continuous on I, ¢ (in the expression above) is an
invertible differentiable function of A and ¢ = u()). More formally, let the above
map be denoted 6, so that 8()\) is given by the expression on the right for A € I.
Then 6(A1) = ¢1. By the inverse function theorem 6 is a diffeomorphism on to its
image J; = (I), and J; is an open interval containing ¢;. Let £ = 6~ on J;. Then

99 = u(\) and §& = (u({(t)))~*. Define

9012J1—>C

by the formula ¢; = vo£. Then

G1(t) =7 (@)
= (uEn)v(r(£(1)
1
— v(p, (1)):

Thus ¢, is a solution of & = v(x). Moreover, ¢;(t1) = p;. Since J is the maximal
interval of existence for the IVP & = v(x), x(t1) = p,, it follows that J; C J, and
@1 = ¢|s,, which means ¢(J1) C @(J). Thus U, = v(I) = p1(J1) = ¢(J1) is a
subset of ¢ (.J). O

The following picture shows the intersection of two level surfaces of first integrals
which are functionally independent.
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