LECTURE 16

Date of Lecture: March 3, 2021
As always, $\mathbf{K} \in\{\mathbf{R}, \mathbf{C}\}$.
The symbol ${ }^{2}$ is for flagging a cautionary comment or a tricky argument. It occurs in the margins and is Knuth's version of Bourbaki's "dangerous bend symbol".

An n-tuple $\left(x_{1}, \ldots, x_{n}\right)$ of symbols (x_{i} not necessarily real or complex numbers) will also be written as a column vector when convenient. Thus

$$
\left(x_{1}, \ldots, x_{n}\right)=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

A map \boldsymbol{f} from a set S to a product set $T_{1} \times \cdots \times T_{n}$ will often be written as an n-tuple $\boldsymbol{f}=\left(f_{1}, \ldots, f_{n}\right)$, with f_{i} a map from S to T_{i}, and hence, by the above convention, as a column vector

$$
\boldsymbol{f}=\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right]
$$

(See Remark 2.2.2 of Lecture 5 of ANA2.)
The default norm on Euclidean spaces of the form \mathbf{R}^{n} is the Euclidean norm $\left\|\|_{2}\right.$ and we will simply denote it as $\|\|$. The space of \mathbf{K}-linear transformations from \mathbf{K}^{n} to \mathbf{K}^{m} will be denoted $\operatorname{Hom}_{\mathbf{R}}\left(\mathbf{K}^{n}, \mathbf{K}^{m}\right)$ and will be identified in the standard way with the space of $m \times n$ matrices $M_{m, n}(\mathbf{K})$ and the operator norm ${ }^{1}$ on both spaces will be denoted $\left\|\|_{\circ}\right.$. If $m=n$, we write $M_{n}(\mathbf{R})$ for $M_{m, n}(\mathbf{R})$, and $L\left(\mathbf{K}^{n}\right)$ for $\operatorname{Hom}_{\mathbf{K}}\left(\mathbf{K}^{n}, \mathbf{K}^{n}\right)$.

Note that $\left(x_{1}, \ldots, x_{n}\right) \neq\left[x_{1} \ldots x_{n}\right]$. Each side is the transpose of the other.

1. First integrals continued

See also [A1, Chap. 2, § 11] for this material.
1.1. Integral hypersurfaces. We are interested in solving

$$
\dot{x}=v(x)
$$

on a manifold M, where $v: M \rightarrow T(M)$ is a \mathscr{C}^{1} vector field, using first integrals.
Since solutions are obtained first locally and then by glueing, we can work locally. We will therefore (temporarily, until further notice) assume M is an open subset of \mathbf{R}^{n}. In this case, vector notations make sense, and we can write

$$
\begin{equation*}
\dot{\boldsymbol{x}}=\boldsymbol{v}(\boldsymbol{x}) \tag{1.1.1}
\end{equation*}
$$

Let the components of \boldsymbol{v} be $v_{i}, i=1, \ldots, n$, i.e. $\boldsymbol{v}=\left(v_{1}, \ldots, v_{n}\right)$, and let $g: M \rightarrow \mathbf{R}$ be a first integral for \boldsymbol{v} so that $\sum_{i=1}^{n} v_{i} \frac{\partial g}{\partial x_{i}} \equiv 0$ on M.

[^0]If I is an open interval of existence for (1.1.1) and $\varphi: I \rightarrow M$ a solution of (1.1.1), then we claim that $g \circ \varphi: I \rightarrow \mathbf{R}$ is constant. Indeed, by the chain rule (with $\varphi=\left(\varphi_{1}, \ldots, \varphi_{n}\right)$), we have

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}\{(g \circ \boldsymbol{\varphi})(t)\} & =\sum_{i=1}^{n}\left(\frac{\partial g}{\partial x_{i}}(\boldsymbol{\varphi}(t))\right) \dot{\varphi}_{i}(t) \\
& =\sum_{i=1}^{n}\left(\frac{\partial g}{\partial x_{i}}(\boldsymbol{\varphi}(t))\right) v_{i}(\boldsymbol{\varphi}(t)) \quad \text { (for } \boldsymbol{\varphi} \text { is a solution of (1.1.1)) } \\
& =\boldsymbol{v}(\boldsymbol{\varphi}(t))(g) \\
& =0
\end{aligned}
$$

since g is a first integral for \boldsymbol{v}.
Now suppose $c \in g(M)$ so that $g^{-1}(c)$ is non-empty. Consider the level hypersurface

$$
S=g^{-1}(c)
$$

Such S are sometimes called integral hypersurfaces for \boldsymbol{v}. Fix $\boldsymbol{p}_{0} \in S$. Let $t_{0} \in \mathbf{R}$, and suppose $\varphi: I \rightarrow M$ is a solution of

$$
\dot{\boldsymbol{x}}=\boldsymbol{v}(\boldsymbol{x}), \quad \boldsymbol{x}\left(t_{0}\right)=\boldsymbol{p}_{0}
$$

where I is an open interval of existence for the above IVP. Now $g \circ \varphi$ is a constant as we just saw, whence $g(\boldsymbol{\varphi}(t))=g\left(\boldsymbol{\varphi}\left(t_{0}\right)\right)=g\left(\boldsymbol{p}_{0}\right)=c$ for all $t \in I$. Thus $\varphi(t) \in S$ for all $t \in I$. The conclusion is:

Lemma 1.1.2. Let $\varphi: I \rightarrow M$ be a solution of (1.1.1) and suppose for some time point t_{0} in $I, \varphi\left(t_{0}\right) \in S$. Then $\varphi(t) \in S$ for all $t \in I$.
1.2. Functionally independent first integrals. Next suppose we have $n-1$ first integrals f_{1}, \ldots, f_{n-1} for \boldsymbol{v} and write $\boldsymbol{f}=\left(f_{1}, \ldots, f_{n-1}\right): M \rightarrow \mathbf{R}^{n-1}$ for the resulting map. We say f_{1}, \ldots, f_{n-1} are functionally independent on a subset X of M if

$$
\operatorname{rank}\left(\boldsymbol{f}^{\prime}(\boldsymbol{p})\right)=n-1, \quad \boldsymbol{p} \in X
$$

Theorem 1.2.1. Let $M, \boldsymbol{v}, \boldsymbol{f}=\left(f_{1}, \ldots, f_{n-1}\right)$ be as above. Suppose \boldsymbol{v} has no singular points on M (i.e. $\boldsymbol{v}(\boldsymbol{x}) \neq 0$ for every $\boldsymbol{x} \in M$). Let \boldsymbol{c} be a point on $f(M)$, \boldsymbol{p}_{0} a point such that $\boldsymbol{f}\left(\boldsymbol{p}_{0}\right)=\boldsymbol{c}, C$ the connected component of $f^{-1}(\boldsymbol{c})$ containing \boldsymbol{p}_{0}, and suppose $\operatorname{rank}\left(\boldsymbol{f}^{\prime}(\boldsymbol{p})\right)=n-1$ for all $\boldsymbol{p} \in C$ (i.e., f_{1}, \ldots, f_{n-1} are functionally independent on C). Let $\boldsymbol{\varphi}: J \rightarrow M$ be the maximal solution of the IVP

$$
\dot{\boldsymbol{x}}=\boldsymbol{v}(\boldsymbol{x}), \quad \boldsymbol{x}\left(t_{0}\right)=\boldsymbol{p}_{0} .
$$

Then $\boldsymbol{\varphi}(J)=C$, i.e. $x_{i}=\varphi_{i}(t), i=1, \ldots, n, t \in J$ is a parameterisation of C, where φ_{i} is the $i^{\text {th }}$ component of φ.

Proof. From Lemma 1.1.2, and the fact that $\varphi(J)$ is connected, it is clear that φ takes values in C. Indeed, if $\boldsymbol{c}=\left(c_{1}, \ldots, c_{n-1}\right)$ and if $S_{i}=\varphi^{-1}\left(c_{i}\right)$, then C is the connected component of $\cap_{i=1}^{n-1} S_{i}$ containing \boldsymbol{p}_{0}, and we know from Lemma 1.1.2 that $\boldsymbol{\varphi}$ takes values in $\cap_{i=1}^{n-1} S_{i}$.

We also know, via the Implicit Function Theorem, or more precisely, by the version of the theorem in problems 5 and 6 of HW 7 of ANA2, that C is a onedimensional manifold. Let $\mathscr{A}=\left\{\left(U_{\alpha}, \psi_{\alpha}\right)\right\}_{\alpha \in \Sigma}$ be an atlas for C. Without loss of generality, we may assume each U_{α} is connected.

Fix $\alpha \in \Sigma$. Let $I=\psi_{\alpha}\left(U_{\alpha}\right)$. Then I is an open interval in R. Let $\gamma: I \rightarrow U_{\alpha}$ be the inverse of ψ_{α}, and as usual, write $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$. Then $x_{i}(\lambda)=\gamma_{i}(\lambda)$ is a parameterisation of $U_{\alpha} \subset C$ over the interval I. Since $\psi_{\alpha}{ }^{\circ} \gamma$ is the identity on I, by the chain rule it follows that $\gamma^{\prime}(\lambda) \neq \mathbf{0}$ for any $\lambda \in I$.

Next, since $\boldsymbol{\gamma}$ takes values in C, we have $\boldsymbol{f} \circ \boldsymbol{\gamma}$ is constant on I, and the constant value is \boldsymbol{c}. By the chain rule we therefore have that

$$
\boldsymbol{f}^{\prime}(\gamma(\lambda)) \gamma^{\prime}(\lambda)=0, \quad(\lambda \in I)
$$

On the other hand, we also know that $\sum_{k=1}^{n} v_{k} \frac{\partial f_{i}}{\partial x_{k}}=\boldsymbol{v}\left(f_{i}\right) \equiv 0$ on M for $i=$ $1, \ldots, n-1$, which implies that $\boldsymbol{f}^{\prime}(\boldsymbol{x}) \boldsymbol{v}(\boldsymbol{x})=0$ for all $\boldsymbol{x} \in M$. Thus both $\gamma^{\prime}(\lambda)$ and $\boldsymbol{v}(\gamma(\lambda))$ are non-zero vectors in the null space of $\boldsymbol{f}^{\prime}(\gamma(\lambda))$ for every λ in I. Since the rank of $\boldsymbol{f}^{\prime}(\boldsymbol{p})$ is $n-1$ for every point of C, the null space of $\boldsymbol{f}^{\prime}(\boldsymbol{\gamma}(\lambda))$ has dimension one for every $\lambda \in I$. It follows that we have non-zero scalars $u(\lambda)$, one for each $\lambda \in I$, such that

$$
\begin{equation*}
\gamma^{\prime}(\lambda)=u(\lambda) \boldsymbol{v}(\gamma(\lambda)), \quad(\lambda \in I) \tag{*}
\end{equation*}
$$

Let $\boldsymbol{p} \in \boldsymbol{\varphi}(J)$, and $s \in J$ a pre-image of \boldsymbol{p}. There is an index $\alpha \in \Sigma$ such that $\boldsymbol{p} \in U_{\alpha}$, and since $\varphi^{-1}\left(U_{\alpha}\right)$ is open and contains s, there is an $\varepsilon>0$ such that $(s-\varepsilon, s+\varepsilon) \subset \varphi^{-1}\left(U_{\alpha}\right)$. In particular, $\psi_{\alpha} \circ \varphi$ makes sense on $(s-\varepsilon, s+\varepsilon)$. Let γ and u be as above for this α. For $t \in(s-\varepsilon, s+\varepsilon)$ we have, via the chain rule and (*) above,

$$
\begin{aligned}
\left(\psi_{\alpha} \circ \boldsymbol{\varphi}\right)^{\prime}(t) & =\psi_{\alpha}^{\prime}(\boldsymbol{\varphi}(t)) \boldsymbol{v}(\boldsymbol{\varphi}(t)) \\
& =\frac{1}{u\left(\psi_{\alpha}(\boldsymbol{\varphi}(t))\right)} \psi_{\alpha}^{\prime}(\boldsymbol{\varphi}(t)) \gamma^{\prime}\left(\psi_{\alpha}(\boldsymbol{\varphi}(t))\right) \\
& =\frac{1}{u\left(\psi_{\alpha}(\boldsymbol{\varphi}(t))\right)}\left(\psi_{\alpha} \circ \gamma\right)^{\prime}\left(\psi_{\alpha}(\boldsymbol{\varphi}(t))\right) \\
& =\frac{1}{u\left(\psi_{\alpha}(\boldsymbol{\varphi}(t))\right)}
\end{aligned}
$$

which is non-zero. This means that $\psi_{\alpha} \circ \varphi$ is a homemorphism on $(s-\varepsilon, s+\varepsilon)$. Hence φ is a local homeomorphism to C. In particular $\varphi(J)$ is open in C.

In order to show that $\varphi(J)=C$ we claim that it is enough to show the following:
(P) If $\alpha \in \Sigma$ is such that $U_{\alpha} \cap \varphi(J) \neq \emptyset$ then $U_{\alpha} \subset \varphi(J)$.

Indeed, suppose (P) is true. In that case, if $U_{\alpha} \nsubseteq \varphi(J)$ then $U_{\alpha} \cap \varphi(J)=\emptyset$. Let $\Sigma^{\prime}=\left\{\alpha \in \Sigma \mid U_{\alpha} \nsubseteq \varphi(J)\right\}$ and let $V=\bigcup_{\alpha \in \Sigma^{\prime}} U_{\alpha}$. Then $\varphi(J) \cup V=C$, and since $V \cap \varphi(J)=\emptyset$, and since C is connected, either $\varphi(J)$ or V is empty. Now $\varphi(J)$ is clearly non-empty, and hence $V=\emptyset$, whence $C=\varphi(J)$.

Suppose $U_{\alpha} \cap \varphi(J) \neq \emptyset$. We have to show that $U_{\alpha} \subset \varphi(J)$. As before, let $I=\psi_{\alpha}\left(U_{\alpha}\right)$ so that I is an open interval in \mathbf{R}, and as before, let $\gamma: I \rightarrow U_{\alpha}$ be the inverse of ψ_{α}. Let $u: I \rightarrow \mathbf{R}$ be as in $(*)$. For $\lambda^{*} \in I$ neither $\gamma^{\prime}\left(\lambda^{*}\right)$ nor $\boldsymbol{v}\left(\gamma\left(\lambda^{*}\right)\right)$ is zero, and hence there is an index i such that the $i^{\text {th }}$ component of both is non-zero. By continuity of γ^{\prime} and $\boldsymbol{v} \circ \gamma$ this property propagates to a neighbourhood I^{*} of λ^{*}, whence $u(\lambda)=\left(\gamma^{\prime}(\lambda)\right) /\left(v_{i}(\lambda)\right)$ on I^{*}. This proves that $u: I \rightarrow \mathbf{R}$ is continuous.

Pick $\boldsymbol{p}_{1} \in U_{\alpha} \cap \boldsymbol{\varphi}(J)$. Let $t_{1} \in J$ be such that $\boldsymbol{\varphi}\left(t_{1}\right)=\boldsymbol{p}_{1}$. Let $\lambda_{1}=\psi_{\alpha}\left(\boldsymbol{p}_{1}\right)$. Let

$$
t=t_{1}+\int_{\lambda_{1}}^{\lambda} u(y) \mathrm{d} y, \quad \lambda \in I
$$

Since u is nowhere vanishing and continuous on I, t (in the expression above) is an invertible differentiable function of λ and $\frac{\mathrm{d} t}{\mathrm{~d} \lambda}=u(\lambda)$. More formally, let the above map be denoted θ, so that $\theta(\lambda)$ is given by the expression on the right for $\lambda \in I$. Then $\theta\left(\lambda_{1}\right)=t_{1}$. By the inverse function theorem θ is a diffeomorphism on to its image $J_{1}=\theta(I)$, and J_{1} is an open interval containing t_{1}. Let $\xi=\theta^{-1}$ on J_{1}. Then $\frac{\mathrm{d} \theta}{\mathrm{d} \lambda}=u(\lambda)$ and $\frac{\mathrm{d} \xi}{\mathrm{d} t}=(u(\xi(t)))^{-1}$. Define

$$
\boldsymbol{\varphi}_{1}: J_{1} \rightarrow C
$$

by the formula $\varphi_{1}=\gamma \circ \xi$. Then

$$
\begin{aligned}
\dot{\boldsymbol{\varphi}}_{1}(t) & =\gamma^{\prime}(\xi(t)) \dot{\xi}(t) \\
& =\dot{\xi}(t) u(\xi(t)) \boldsymbol{v}(\gamma(\xi(t))) \\
& \left.=\frac{1}{u(\xi(t))} u(\xi(t)) \boldsymbol{v}\left(\boldsymbol{\varphi}_{1}(t)\right)\right) \\
& =\boldsymbol{v}\left(\boldsymbol{\varphi}_{1}(t)\right)
\end{aligned}
$$

Thus $\boldsymbol{\varphi}_{1}$ is a solution of $\dot{\boldsymbol{x}}=\boldsymbol{v}(\boldsymbol{x})$. Moreover, $\boldsymbol{\varphi}_{1}\left(t_{1}\right)=\boldsymbol{p}_{1}$. Since J is the maximal interval of existence for the IVP $\dot{\boldsymbol{x}}=\boldsymbol{v}(\boldsymbol{x}), \boldsymbol{x}\left(t_{1}\right)=\boldsymbol{p}_{1}$, it follows that $J_{1} \subset J$, and $\boldsymbol{\varphi}_{1}=\left.\boldsymbol{\varphi}\right|_{J_{1}}$, which means $\boldsymbol{\varphi}\left(J_{1}\right) \subset \boldsymbol{\varphi}(J)$. Thus $U_{\alpha}=\gamma(I)=\boldsymbol{\varphi}_{1}\left(J_{1}\right)=\boldsymbol{\varphi}\left(J_{1}\right)$ is a subset of $\varphi(J)$.

The following picture shows the intersection of two level surfaces of first integrals which are functionally independent.

References

[A1] V. I. Arnold, Ordinary Differential Equations, translated by Richard A. Silverman, MIT Press (also Prentice-Hall, India), Cambridge,MA, U.S.A., 1973.
[A2] V. I. Arnold, Ordinary Differential Equations, translated by Roger Cooke, Universitext, Springer-Verlag, Berlin, 2006.

[^0]: ${ }^{1}$ See $\S \S 2.1$ of Lecture 5 of ANA2.

