LECTURE 16

Date of Lecture: March 3, 2021

As always, $\mathbf{K} \in {\{\mathbf{R}, \mathbf{C}\}}$.

The symbol P is for flagging a cautionary comment or a tricky argument. It occurs in the margins and is Knuth's version of Bourbaki's "dangerous bend symbol".

An *n*-tuple (x_1, \ldots, x_n) of symbols $(x_i \text{ not necessarily real or complex numbers}) will also be written as a column vector when convenient. Thus$

$$(x_1,\ldots,x_n) = \begin{bmatrix} x_1\\ \vdots\\ x_n \end{bmatrix}$$

A map f from a set S to a product set $T_1 \times \cdots \times T_n$ will often be written as an *n*-tuple $f = (f_1, \ldots, f_n)$, with f_i a map from S to T_i , and hence, by the above convention, as a column vector

$$\boldsymbol{f} = \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix}.$$

(See Remark 2.2.2 of Lecture 5 of ANA2.)

The default norm on Euclidean spaces of the form \mathbf{R}^n is the Euclidean norm $\| \|_2$ and we will simply denote it as $\| \|$. The space of **K**-linear transformations from \mathbf{K}^n to \mathbf{K}^m will be denoted $\operatorname{Hom}_{\mathbf{R}}(\mathbf{K}^n, \mathbf{K}^m)$ and will be identified in the standard way with the space of $m \times n$ matrices $M_{m,n}(\mathbf{K})$ and the operator norm¹ on both spaces will be denoted $\| \|_{\circ}$. If m = n, we write $M_n(\mathbf{R})$ for $M_{m,n}(\mathbf{R})$, and $L(\mathbf{K}^n)$ for $\operatorname{Hom}_{\mathbf{K}}(\mathbf{K}^n, \mathbf{K}^n)$.

Note that $(x_1, \ldots, x_n) \neq [x_1 \ldots x_n]$. Each side is the transpose of the other.

1. First integrals continued

See also [A1, Chap. 2, §11] for this material.

1.1. Integral hypersurfaces. We are interested in solving

$$\dot{x} = v(x)$$

on a manifold M, where $v: M \to T(M)$ is a \mathscr{C}^1 vector field, using first integrals.

Since solutions are obtained first locally and then by glueing, we can work locally. We will therefore (temporarily, until further notice) assume M is an open subset of \mathbb{R}^n . In this case, vector notations make sense, and we can write

$$\dot{\boldsymbol{x}} = \boldsymbol{v}(\boldsymbol{x}).$$

Let the components of \boldsymbol{v} be v_i , $i = 1, \ldots, n$, i.e. $\boldsymbol{v} = (v_1, \ldots, v_n)$, and let $g: M \to \mathbf{R}$ be a first integral for \boldsymbol{v} so that $\sum_{i=1}^n v_i \frac{\partial g}{\partial x_i} \equiv 0$ on M.

¹See §§2.1 of Lecture 5 of ANA2.

If I is an open interval of existence for (1.1.1) and $\varphi: I \to M$ a solution of (1.1.1), then we claim that $g \circ \varphi: I \to \mathbf{R}$ is constant. Indeed, by the chain rule (with $\varphi = (\varphi_1, \ldots, \varphi_n)$), we have

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} \Big\{ (g \circ \varphi)(t) \Big\} &= \sum_{i=1}^{n} \Big(\frac{\partial g}{\partial x_{i}}(\varphi(t)) \Big) \dot{\varphi}_{i}(t) \\ &= \sum_{i=1}^{n} \Big(\frac{\partial g}{\partial x_{i}}(\varphi(t)) \Big) v_{i}(\varphi(t)) \qquad \text{(for } \varphi \text{ is a solution of } (1.1.1)) \\ &= v(\varphi(t))(g) \\ &= 0 \end{aligned}$$

since g is a first integral for v.

Now suppose $c \in g(M)$ so that $g^{-1}(c)$ is non-empty. Consider the level hypersurface

$$S = g^{-1}(c).$$

Such S are sometimes called *integral hypersurfaces* for v. Fix $p_0 \in S$. Let $t_0 \in \mathbf{R}$, and suppose $\varphi: I \to M$ is a solution of

$$\dot{\boldsymbol{x}} = \boldsymbol{v}(\boldsymbol{x}), \qquad \boldsymbol{x}(t_0) = \boldsymbol{p}_0$$

where I is an open interval of existence for the above IVP. Now $g \circ \varphi$ is a constant as we just saw, whence $g(\varphi(t)) = g(\varphi(t_0)) = g(p_0) = c$ for all $t \in I$. Thus $\varphi(t) \in S$ for all $t \in I$. The conclusion is:

Lemma 1.1.2. Let $\varphi \colon I \to M$ be a solution of (1.1.1) and suppose for some time point t_0 in I, $\varphi(t_0) \in S$. Then $\varphi(t) \in S$ for all $t \in I$.

1.2. Functionally independent first integrals. Next suppose we have n-1 first integrals f_1, \ldots, f_{n-1} for v and write $f = (f_1, \ldots, f_{n-1}) \colon M \to \mathbb{R}^{n-1}$ for the resulting map. We say f_1, \ldots, f_{n-1} are functionally independent on a subset X of M if

$$\operatorname{rank}(\boldsymbol{f}'(\boldsymbol{p})) = n - 1, \qquad \boldsymbol{p} \in X.$$

Theorem 1.2.1. Let M, v, $f = (f_1, \ldots, f_{n-1})$ be as above. Suppose v has no singular points on M (i.e. $v(x) \neq 0$ for every $x \in M$). Let c be a point on f(M), p_0 a point such that $f(p_0) = c$, C the connected component of $f^{-1}(c)$ containing p_0 , and suppose rank(f'(p)) = n-1 for all $p \in C$ (i.e., f_1, \ldots, f_{n-1} are functionally independent on C). Let $\varphi: J \to M$ be the maximal solution of the IVP

$$\dot{\boldsymbol{x}} = \boldsymbol{v}(\boldsymbol{x}), \qquad \boldsymbol{x}(t_0) = \boldsymbol{p}_0.$$

Then $\varphi(J) = C$, i.e. $x_i = \varphi_i(t)$, i = 1, ..., n, $t \in J$ is a parameterisation of C, where φ_i is the *i*th component of φ .

Proof. From Lemma 1.1.2, and the fact that $\varphi(J)$ is connected, it is clear that φ takes values in C. Indeed, if $\mathbf{c} = (c_1, \ldots, c_{n-1})$ and if $S_i = \varphi^{-1}(c_i)$, then C is the connected component of $\bigcap_{i=1}^{n-1} S_i$ containing p_0 , and we know from Lemma 1.1.2 that φ takes values in $\bigcap_{i=1}^{n-1} S_i$.

We also know, via the Implicit Function Theorem, or more precisely, by the version of the theorem in problems 5 and 6 of HW 7 of ANA2, that C is a onedimensional manifold. Let $\mathscr{A} = \{(U_{\alpha}, \psi_{\alpha})\}_{\alpha \in \Sigma}$ be an atlas for C. Without loss of generality, we may assume each U_{α} is connected. Fix $\alpha \in \Sigma$. Let $I = \psi_{\alpha}(U_{\alpha})$. Then I is an open interval in **R**. Let $\gamma: I \to U_{\alpha}$ be the inverse of ψ_{α} , and as usual, write $\gamma = (\gamma_1, \ldots, \gamma_n)$. Then $x_i(\lambda) = \gamma_i(\lambda)$ is a parameterisation of $U_{\alpha} \subset C$ over the interval I. Since $\psi_{\alpha} \circ \gamma$ is the identity on I, by the chain rule it follows that $\gamma'(\lambda) \neq \mathbf{0}$ for any $\lambda \in I$.

Next, since γ takes values in C, we have $\mathbf{f} \circ \boldsymbol{\gamma}$ is constant on I, and the constant value is \mathbf{c} . By the chain rule we therefore have that

$$f'(\gamma(\lambda))\gamma'(\lambda) = 0, \qquad (\lambda \in I).$$

On the other hand, we also know that $\sum_{k=1}^{n} v_k \frac{\partial f_i}{\partial x_k} = \boldsymbol{v}(f_i) \equiv 0$ on M for $i = 1, \ldots, n-1$, which implies that $\boldsymbol{f}'(\boldsymbol{x})\boldsymbol{v}(\boldsymbol{x}) = 0$ for all $\boldsymbol{x} \in M$. Thus both $\boldsymbol{\gamma}'(\lambda)$ and $\boldsymbol{v}(\boldsymbol{\gamma}(\lambda))$ are non-zero vectors in the null space of $\boldsymbol{f}'(\boldsymbol{\gamma}(\lambda))$ for every λ in I. Since the rank of $\boldsymbol{f}'(\boldsymbol{p})$ is n-1 for every point of C, the null space of $\boldsymbol{f}'(\boldsymbol{\gamma}(\lambda))$ has dimension one for every $\lambda \in I$. It follows that we have non-zero scalars $u(\lambda)$, one for each $\lambda \in I$, such that

(*)
$$\gamma'(\lambda) = u(\lambda) v(\gamma(\lambda)), \quad (\lambda \in I).$$

Let $\boldsymbol{p} \in \boldsymbol{\varphi}(J)$, and $s \in J$ a pre-image of \boldsymbol{p} . There is an index $\alpha \in \Sigma$ such that $\boldsymbol{p} \in U_{\alpha}$, and since $\boldsymbol{\varphi}^{-1}(U_{\alpha})$ is open and contains s, there is an $\varepsilon > 0$ such that $(s - \varepsilon, s + \varepsilon) \subset \boldsymbol{\varphi}^{-1}(U_{\alpha})$. In particular, $\psi_{\alpha} \circ \boldsymbol{\varphi}$ makes sense on $(s - \varepsilon, s + \varepsilon)$. Let $\boldsymbol{\gamma}$ and u be as above for this α . For $t \in (s - \varepsilon, s + \varepsilon)$ we have, via the chain rule and (*) above,

$$\begin{split} (\psi_{\alpha} \circ \boldsymbol{\varphi})'(t) &= \psi_{\alpha}'(\boldsymbol{\varphi}(t)) \boldsymbol{v}(\boldsymbol{\varphi}(t)) \\ &= \frac{1}{u(\psi_{\alpha}(\boldsymbol{\varphi}(t)))} \psi_{\alpha}'(\boldsymbol{\varphi}(t)) \boldsymbol{\gamma}'(\psi_{\alpha}(\boldsymbol{\varphi}(t))) \\ &= \frac{1}{u(\psi_{\alpha}(\boldsymbol{\varphi}(t)))} (\psi_{\alpha} \circ \boldsymbol{\gamma})'(\psi_{\alpha}(\boldsymbol{\varphi}(t))) \\ &= \frac{1}{u(\psi_{\alpha}(\boldsymbol{\varphi}(t)))}, \end{split}$$

which is non-zero. This means that $\psi_{\alpha} \circ \varphi$ is a homemorphism on $(s - \varepsilon, s + \varepsilon)$. Hence φ is a local homeomorphism to C. In particular $\varphi(J)$ is open in C.

In order to show that $\varphi(J) = C$ we claim that it is enough to show the following:

(P) If
$$\alpha \in \Sigma$$
 is such that $U_{\alpha} \cap \varphi(J) \neq \emptyset$ then $U_{\alpha} \subset \varphi(J)$.

Indeed, suppose (P) is true. In that case, if $U_{\alpha} \notin \varphi(J)$ then $U_{\alpha} \cap \varphi(J) = \emptyset$. Let $\Sigma' = \{ \alpha \in \Sigma \mid U_{\alpha} \notin \varphi(J) \}$ and let $V = \bigcup_{\alpha \in \Sigma'} U_{\alpha}$. Then $\varphi(J) \cup V = C$, and since $V \cap \varphi(J) = \emptyset$, and since C is connected, either $\varphi(J)$ or V is empty. Now $\varphi(J)$ is clearly non-empty, and hence $V = \emptyset$, whence $C = \varphi(J)$.

Suppose $U_{\alpha} \cap \varphi(J) \neq \emptyset$. We have to show that $U_{\alpha} \subset \varphi(J)$. As before, let $I = \psi_{\alpha}(U_{\alpha})$ so that I is an open interval in \mathbf{R} , and as before, let $\gamma: I \to U_{\alpha}$ be the inverse of ψ_{α} . Let $u: I \to \mathbf{R}$ be as in (*). For $\lambda^* \in I$ neither $\gamma'(\lambda^*)$ nor $v(\gamma(\lambda^*))$ is zero, and hence there is an index i such that the i^{th} component of both is non-zero. By continuity of γ' and $v \circ \gamma$ this property propagates to a neighbourhood I^* of λ^* , whence $u(\lambda) = (\gamma'(\lambda))/(v_i(\lambda))$ on I^* . This proves that $u: I \to \mathbf{R}$ is continuous.

Pick $p_1 \in U_\alpha \cap \varphi(J)$. Let $t_1 \in J$ be such that $\varphi(t_1) = p_1$. Let $\lambda_1 = \psi_\alpha(p_1)$. Let

$$t = t_1 + \int_{\lambda_1}^{\lambda} u(y) \mathrm{d}y, \qquad \lambda \in I.$$

Since u is nowhere vanishing and continuous on I, t (in the expression above) is an invertible differentiable function of λ and $\frac{dt}{d\lambda} = u(\lambda)$. More formally, let the above map be denoted θ , so that $\theta(\lambda)$ is given by the expression on the right for $\lambda \in I$. Then $\theta(\lambda_1) = t_1$. By the inverse function theorem θ is a diffeomorphism on to its image $J_1 = \theta(I)$, and J_1 is an open interval containing t_1 . Let $\xi = \theta^{-1}$ on J_1 . Then $\frac{d\theta}{d\lambda} = u(\lambda)$ and $\frac{d\xi}{dt} = (u(\xi(t)))^{-1}$. Define

$$\varphi_1: J_1 \to C$$

by the formula $\varphi_1 = \gamma \circ \xi$. Then

$$\begin{split} \dot{\boldsymbol{\varphi}}_1(t) &= \boldsymbol{\gamma}'(\boldsymbol{\xi}(t))\dot{\boldsymbol{\xi}}(t) \\ &= \dot{\boldsymbol{\xi}}(t)u(\boldsymbol{\xi}(t))\boldsymbol{v}(\boldsymbol{\gamma}(\boldsymbol{\xi}(t))) \\ &= \frac{1}{u(\boldsymbol{\xi}(t))}u(\boldsymbol{\xi}(t))\boldsymbol{v}(\boldsymbol{\varphi}_1(t))) \\ &= \boldsymbol{v}(\boldsymbol{\varphi}_1(t)). \end{split}$$

Thus φ_1 is a solution of $\dot{\boldsymbol{x}} = \boldsymbol{v}(\boldsymbol{x})$. Moreover, $\varphi_1(t_1) = \boldsymbol{p}_1$. Since J is the maximal interval of existence for the IVP $\dot{\boldsymbol{x}} = \boldsymbol{v}(\boldsymbol{x})$, $\boldsymbol{x}(t_1) = \boldsymbol{p}_1$, it follows that $J_1 \subset J$, and $\varphi_1 = \varphi|_{J_1}$, which means $\varphi(J_1) \subset \varphi(J)$. Thus $U_\alpha = \gamma(I) = \varphi_1(J_1) = \varphi(J_1)$ is a subset of $\varphi(J)$.

The following picture shows the intersection of two level surfaces of first integrals which are functionally independent.

References

- [A1]
- V. I. Arnold, Ordinary Differential Equations, translated by Richard A. Silverman, MIT Press (also Prentice-Hall, India), Cambridge, MA, U.S.A., 1973.
 V. I. Arnold, Ordinary Differential Equations, translated by Roger Cooke, Universitext, Springer-Verlag, Berlin, 2006. [A2]