
LECTURE 12

Date of Lecture: February 10, 2021

As always, K ∈ {R, C}.
The symbol � is for flagging a cautionary comment or a tricky argument. It

occurs in the margins and is Knuth’s version of Bourbaki’s “dangerous bend sym-
bol”.

An n-tuple (x1, . . . , xn) of symbols (xi not necessarily real or complex numbers)
will also be written as a column vector when convenient. Thus

(x1, . . . , xn) =

x1

...
xn

 .
A map f from a set S to a product set T1 × · · · × Tn will often be written as

an n-tuple f = (f1, . . . , fn), with fi a map from S to Ti, and hence, by the above
convention, as a column vector

f =

f1

...
fn

 .
(See Remark 2.2.2 of Lecture 5 of ANA2.)

The default norm on Euclidean spaces of the form Rn is the Euclidean norm ‖ ‖2
and we will simply denote it as ‖ ‖. The space of K-linear transformations from
Kn to Km will be denoted HomR(Kn,Km) and will be identified in the standard
way with the space of m × n matrices Mm,n(K) and the operator norm1 on both
spaces will be denoted ‖ ‖◦. If m = n, we write Mn(R) for Mm,n(R), and L(Kn)
for HomK(Kn, Kn).

Note that (x1, . . . , xn) 6= [x1 . . . xn]. Each side is the transpose of the other.�

1. Applications of real canonical forms to Linear ODEs

See [G, pp.37–40], [CL, Chapter 3] and [A1, Chapter3, § 25] for other material
on this topic.

1.1. Exponentials. The following lemma is useful for “computing” exponentials
via Jordan decompositions.

Lemma 1.1.1. Let A ∈Mn(R), Γ ∈ GLn(R).

(a) eΓAΓ−1

= ΓeAΓ−1.

1See §§2.1 of Lecture 5 of ANA2.
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(b) If

A =



A1 0 0
A2 0 0

A3
. . .

. . . 0
At


then

eA =



eA1 0 0
eA2 0 0

eA3
. . .

. . . 0
eAt


Proof. For part (a), for each non-negative integer N we have

N∑
n=0

(ΓAΓ−1)n

n!
= Γ

(
N∑
n=0

An

n!

)
Γ−1.

From item 8 in §1 of [ANA2, Lecture 7] , the product of matrices respects limits.
Let N →∞ in the above to get (a).

For (b), let Bi be the block diagonal n × n matrix in which the Ak in A are
replaced by 0, for k 6= i, and the ith block is Ai. Then B1, . . . , Bt commute and
their sum is A. Therefore, we may assume, without loss of generality that Ak = 0
for k ≥ 2. Let the size of each block in the decompositions we are considering be
r1, . . . , rt. Let

ZN =

N∑
n=0

An1
n!
− eA1 .

Set

E =


eA1 0 0

Ir2 0 0

Ir3
. . .

. . . 0
Irt


Then

N∑
n=0

An

n!
− E =



ZN 0 0
0 0 0

0
. . .

. . . 0
0


Moreover, it is easy to see that the ‖ · ‖◦ of the matrix on the right is actually

‖ZN‖◦. Now, ZN → 0 as N →∞, and hence
∑∞
n=0

An

n! = E. Thus eA = E, which
is what we had to show. �
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1.2. Structure of solutions of homogeneous linear equations. Let A be a
constant n× n matrix, i.e., A ∈Mn(R). Consider the associated DE

(1.2.1)
.
x = Ax.

Let the Jordan form of A be

J =


J̃1 0 0 . . . 0

J̃2 0 . . . 0
. . .

J̃t−1 0

J̃t

 .
There exists Γ ∈ GLn(R) such that

A = ΓJΓ−1.

The block J̃k are either of the form [Lecture 11, (1.1.2)] (for real eigenvalues λ)
or of the form [Lecture 11, (1.1.5)] with M of the form [Lecture 11, (1.1.6)], for
eigenvalues λ = a+ ib with b 6= 0. Since solutions of (1.2.1) are of the form etAx0,
x0 ∈ Rn, we can apply Lemma 1.1.1 to work out the solutions.

If J̃k is of the form [Lecture 11, (1.1.2)] with the diagonal entries being λk ∈ R,

then writing J̃k = λkIrk + B, and using results from Quiz 2, (note λIrk and B
commute) we see that

etJ̃k = etλk



1 t t2/2! . . . trk−1/(rk − 1)!
1 t . . . trk−2/(rk − 2)!

1 . . . trk−3/(rk − 3)!
. . . t2/2!

t
1


.

If J̃k is of the form [Lecture 11, (1.1.5)] with M of the form [Lecture 11, (1.1.6)]
with a = ak and b = bk, then we know from Problem 4) of HW 5 that

etJ̃k = eakt



B tB t2/2!B . . . trk−1/(rk − 1)!B
B tB . . . trk−2/(rk − 2)!B

B . . . trk−3/(rk − 3)!B
. . . t2/2!B

tB
B


.

where

B =

[
cos (bkt) sin (bk)
− sin (bkt) cos (bkt)

]
Using Lemma 1.1.1 we see that solutions are of the form ϕ : R → Rn where

ϕk(t) is a linear combination of {tieλkt | i = 0, . . . , rk − 1, λk ∈ R}, {tieakt cos bkt |
i = 0, . . . , rk − 1, λk = ak + ibk, bk 6= 0} and {tieakt sin bkt | i = 0, . . . , rk − 1, λk =
ak + ibk, bk 6= 0}, as k ranges from 1 to t. We are not claiming that every possible
linear combination is possible for each entry each independent of other entires.
That would give n2 degrees of freedom for the number of solutions. Moreover, two

distinct real Jordan blocks J̃k and J̃l may well have the same (real or complex)
associated eigenvalue(s).
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1.3. Scalar nth order Linear Differential Equations. Consider the scalar nth

order linear DE with constant coefficiants.

(1.3.1) y(n) + an−1y
(n−1) + · · ·+ aiy

′ + any = 0.

As is well-known this is equivalent to the first order linear autonomous DE of the
form

(1.3.2)
.
x = Ax.

A =


0 1

. . . 0
0 1

. . .
. . .

. . . 1
−a0 −a1 . . . −an−1


If ψ : R → Rn is a solution of (1.3.2), then ϕ = ψ1 is a solution of (1.3.1). Con-
versely, if ϕ : R → R is a solution of (1.3.1), then ψ : R → Rn with ψi = ϕ(i−1),
i = 1, . . . , n, is a solution of (1.3.2) where ϕ(0) := ϕ. Moroever, the characteristic
polynomial of A is ± the characteristic polynomial of (1.3.1) according to Problem
1) of HW 5. Let

σ(A) = {λ ∈ C | λ is an eigenvalue of A},

and

S(A) = σ(A)/R,

where R is the equivalence relation λRτ if either σ = τ or σ̄ = τ . Note that we
have a partition

σ(A) = σ1(A)tσ2(A)

where σ1(A) = σ(A) ∩R, and σ2(A) = σ(A) r σA(A). Under R, each element of
σ1(A) is an equivalence class by itself, whereas, the equivalence classes of elements
of σ2(A) consist of two elements, {λ, λ̄}. In the same way S(A) partitions into

S(A) = S1(A) t S2(A).

According to Problem 2) of HW5 there is a one-to-one correspondence between
the number of Jordan blocks of A and σ(A), because of the special form of A
associated with (1.3.2) and (1.3.1). Our discussion on real Jordan forms then
shows that there is a one-to-one correspondence between S(A) and the number of
real Jordan blocks.

Let [λ] denote the R-equivalence class of λ ∈ σ(A). If [λ] ∈ S1(A), then the
real Jordan form associated with [λ] is as in [Lecture 11, (1.1.2)] the size being
equal to the multiplicity of the real root λ of the characteristic polynomial of A. If
λ = a+ib ∈ σ2(A), with b > 0 for definiteness, then the real Jordan form associated
with [λ] ∈ S2(A) is as in [Lecture 11, (1.1.5)] with M being the matrix in [Lecture
11, (1.1.6)].

Let the Jordan block associated with s ∈ S(A) be denoted J̃s. With each
s ∈ S(A) there is a well defined multiplicity rs associated with s, namely the
multiplicity of any root λs of the characteristic equation of A in the equivalence

class s. This is half the size of the Jordan block associated with J̃s if sk ∈ S2(A),

and equal to the size of the Jordan block J̃s if s ∈ S1(A). If s ∈ S2(A), let as and
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bs be real numbers, with bs > 0 such that s = [as + ibs]. Since we are insisting bki
is positive, it is well-defined.

From our earlier discussion, it follows that the solutions of (1.3.1) are in the
linear span of the set

Q =
⋃

s∈S1(A)

rs−1⋃
j=0

{tjetλs} ∪
⋃

s∈S2(A)

rs−1⋃
j=0

{tjeast cos bst, t
jeast sin bst}.

The space of solutions of (1.3.1) is an n-dimensional R-vector space, and the
cardinality of Q ≤ n. It follows that the cardinality of Q is n and Q is a basis for
the space of solutions of (1.3.1). In particular, the general solution of (1.3.1) is

y(t) =
∑

s∈S1(A)

rs−1∑
j=0

csjt
jeλst +

∑
s∈S2(A)

rs−1∑
j=0

(
djst

jeast cos bst+ esjt
jeast sin bst

)
,

with cjs, djs, and ejs being arbitrary real constants, uniquely determined by the
solution y(t).

1.3.3. The above proves the statements made in the section on (scalar) homoge-
neous linear DE’s with constant coefficients in DEQN Cookbook-II. In particular,
the union of the sets labelled R, C, and S in loc.cit. form a basis for the solution
space of such equations, a fact which is not a priori obvious.
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