LECTURE 12

Date of Lecture: February 10, 2021

As always, $\mathbf{K} \in {\{\mathbf{R}, \mathbf{C}\}}$.

The symbol \bigotimes is for flagging a cautionary comment or a tricky argument. It occurs in the margins and is Knuth's version of Bourbaki's "dangerous bend symbol".

An *n*-tuple (x_1, \ldots, x_n) of symbols $(x_i \text{ not necessarily real or complex numbers}) will also be written as a column vector when convenient. Thus$

$$(x_1,\ldots,x_n) = \begin{bmatrix} x_1\\ \vdots\\ x_n \end{bmatrix}.$$

A map f from a set S to a product set $T_1 \times \cdots \times T_n$ will often be written as an *n*-tuple $f = (f_1, \ldots, f_n)$, with f_i a map from S to T_i , and hence, by the above convention, as a column vector

$$oldsymbol{f} = egin{bmatrix} f_1 \ dots \ f_n \end{bmatrix} .$$

(See Remark 2.2.2 of Lecture 5 of ANA2.)

The default norm on Euclidean spaces of the form \mathbf{R}^n is the Euclidean norm $|| ||_2$ and we will simply denote it as || ||. The space of **K**-linear transformations from \mathbf{K}^n to \mathbf{K}^m will be denoted $\operatorname{Hom}_{\mathbf{R}}(\mathbf{K}^n, \mathbf{K}^m)$ and will be identified in the standard way with the space of $m \times n$ matrices $M_{m,n}(\mathbf{K})$ and the operator norm¹ on both spaces will be denoted $|| ||_{\circ}$. If m = n, we write $M_n(\mathbf{R})$ for $M_{m,n}(\mathbf{R})$, and $L(\mathbf{K}^n)$ for $\operatorname{Hom}_{\mathbf{K}}(\mathbf{K}^n, \mathbf{K}^n)$.

Ŷ

Note that $(x_1, \ldots, x_n) \neq [x_1 \ldots x_n]$. Each side is the transpose of the other.

1. Applications of real canonical forms to Linear ODEs

See [G, pp.37–40], [CL, Chapter 3] and [A1, Chapter 3, §25] for other material on this topic.

1.1. **Exponentials.** The following lemma is useful for "computing" exponentials via Jordan decompositions.

Lemma 1.1.1. Let $A \in M_n(\mathbf{R}), \Gamma \in GL_n(\mathbf{R})$.

(a) $e^{\Gamma A \Gamma^{-1}} = \Gamma e^A \Gamma^{-1}$.

¹See §§2.1 of Lecture 5 of ANA2.

(b) If

then

$$A = \begin{bmatrix} A_1 & 0 & & 0 \\ & A_2 & 0 & 0 \\ & & A_3 & \ddots & \\ & & \ddots & 0 \\ & & & & A_t \end{bmatrix}$$
$$e^A = \begin{bmatrix} e^{A_1} & 0 & & 0 \\ & e^{A_2} & 0 & 0 \\ & & e^{A_3} & \ddots & \\ & & & \ddots & 0 \\ & & & & e^{A_t} \end{bmatrix}$$

Proof. For part (a), for each non-negative integer N we have

$$\sum_{n=0}^{N} \frac{(\Gamma A \Gamma^{-1})^n}{n!} = \Gamma \left(\sum_{n=0}^{N} \frac{A^n}{n!} \right) \Gamma^{-1}.$$

From item 8 in §1 of [ANA2, Lecture 7], the product of matrices respects limits. Let $N \to \infty$ in the above to get (a).

For (b), let B_i be the block diagonal $n \times n$ matrix in which the A_k in A are replaced by 0, for $k \neq i$, and the *i*th block is A_i . Then B_1, \ldots, B_t commute and their sum is A. Therefore, we may assume, without loss of generality that $A_k = 0$ for $k \geq 2$. Let the size of each block in the decompositions we are considering be r_1, \ldots, r_t . Let

$$Z_N = \sum_{n=0}^N \frac{A_1^n}{n!} - e^{A_1}.$$

 Set

$$E = \begin{bmatrix} e^{A_1} & 0 & & 0 \\ & I_{r_2} & 0 & & 0 \\ & & I_{r_3} & \ddots & \\ & & & \ddots & 0 \\ & & & & & I_{r_t} \end{bmatrix}$$

Then

$$\sum_{n=0}^{N} \frac{A^{n}}{n!} - E = \begin{bmatrix} Z_{N} & 0 & & 0 \\ & 0 & 0 & & 0 \\ & & 0 & \ddots & \\ & & & \ddots & 0 \\ & & & & \ddots & 0 \\ & & & & & 0 \end{bmatrix}$$

Moreover, it is easy to see that the $\|\cdot\|_{\circ}$ of the matrix on the right is actually $\|Z_N\|_{\circ}$. Now, $Z_N \to 0$ as $N \to \infty$, and hence $\sum_{n=0}^{\infty} \frac{A^n}{n!} = E$. Thus $e^A = E$, which is what we had to show.

1.2. Structure of solutions of homogeneous linear equations. Let A be a constant $n \times n$ matrix, i.e., $A \in M_n(\mathbf{R})$. Consider the associated DE

 $(1.2.1) \qquad \qquad \dot{\boldsymbol{x}} = A\boldsymbol{x}.$

Let the Jordan form of A be

$$\mathbf{J} = \begin{bmatrix} \widetilde{J}_1 & 0 & 0 & \dots & 0 \\ & \widetilde{J}_2 & 0 & \dots & 0 \\ & & \ddots & & \\ & & & \widetilde{J}_{t-1} & 0 \\ & & & & & \widetilde{J}_t \end{bmatrix}$$

There exists $\Gamma \in GL_n(\mathbf{R})$ such that

$$A = \Gamma \mathbf{J} \Gamma^{-1}.$$

The block \widetilde{J}_k are either of the form [Lecture 11, (1.1.2)] (for real eigenvalues λ) or of the form [Lecture 11, (1.1.5)] with M of the form [Lecture 11, (1.1.6)], for eigenvalues $\lambda = a + ib$ with $b \neq 0$. Since solutions of (1.2.1) are of the form $e^{tA} \boldsymbol{x}_0$, $\mathbf{x}_0 \in \mathbf{R}^n$, we can apply Lemma 1.1.1 to work out the solutions.

If J_k is of the form [Lecture 11, (1.1.2)] with the diagonal entries being $\lambda_k \in \mathbf{R}$, then writing $\tilde{J}_k = \lambda_k I_{r_k} + B$, and using results from Quiz 2, (note λI_{r_k} and B commute) we see that

$$e^{t\tilde{J}_{k}} = e^{t\lambda_{k}} \begin{bmatrix} 1 & t & t^{2}/2! & \dots & t^{r_{k}-1}/(r_{k}-1)! \\ 1 & t & \dots & t^{r_{k}-2}/(r_{k}-2)! \\ 1 & \dots & t^{r_{k}-3}/(r_{k}-3)! \\ & \ddots & t^{2}/2! \\ & & t \\ & & 1 \end{bmatrix}$$

If \widetilde{J}_k is of the form [Lecture 11, (1.1.5)] with M of the form [Lecture 11, (1.1.6)] with $a = a_k$ and $b = b_k$, then we know from Problem 4) of HW 5 that

$$e^{t\tilde{J}_{k}} = e^{a_{k}t} \begin{bmatrix} B & tB & t^{2}/2!B & \dots & t^{r_{k}-1}/(r_{k}-1)!B \\ B & tB & \dots & t^{r_{k}-2}/(r_{k}-2)!B \\ B & \dots & t^{r_{k}-3}/(r_{k}-3)!B \\ & \ddots & t^{2}/2!B \\ & & tB \\ B & & B \end{bmatrix}$$

where

$$B = \begin{bmatrix} \cos(b_k t) & \sin(b_k) \\ -\sin(b_k t) & \cos(b_k t) \end{bmatrix}$$

Using Lemma 1.1.1 we see that solutions are of the form $\varphi \colon \mathbf{R} \to \mathbf{R}^n$ where $\varphi_k(t)$ is a linear combination of $\{t^i e^{\lambda_k t} \mid i = 0, \ldots, r_k - 1, \lambda_k \in \mathbf{R}\}, \{t^i e^{a_k t} \cos b_k t \mid i = 0, \ldots, r_k - 1, \lambda_k = a_k + ib_k, b_k \neq 0\}$ and $\{t^i e^{a_k t} \sin b_k t \mid i = 0, \ldots, r_k - 1, \lambda_k = a_k + ib_k, b_k \neq 0\}$, as k ranges from 1 to t. We are not claiming that every possible linear combination is possible for each entry each independent of other entires. That would give n^2 degrees of freedom for the number of solutions. Moreover, two distinct real Jordan blocks \tilde{J}_k and \tilde{J}_l may well have the same (real or complex) associated eigenvalue(s).

1.3. Scalar n^{th} order Linear Differential Equations. Consider the scalar n^{th} order linear DE with constant coefficients.

(1.3.1)
$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_iy' + a_ny = 0.$$

As is well-known this is equivalent to the first order linear autonomous DE of the form

(1.3.2)
$$\dot{\boldsymbol{x}} = A\boldsymbol{x}.$$

$$A = \begin{bmatrix} 0 & 1 & \ddots & 0 \\ 0 & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & \ddots & \\ -a_0 & -a_1 & \dots & -a_{n-1} \end{bmatrix}$$

If $\psi: \mathbf{R} \to \mathbf{R}^n$ is a solution of (1.3.2), then $\varphi = \psi_1$ is a solution of (1.3.1). Conversely, if $\varphi: \mathbf{R} \to \mathbf{R}$ is a solution of (1.3.1), then $\psi: \mathbf{R} \to \mathbf{R}^n$ with $\psi_i = \varphi^{(i-1)}$, $i = 1, \ldots, n$, is a solution of (1.3.2) where $\varphi^{(0)} := \varphi$. Moreover, the characteristic polynomial of A is \pm the characteristic polynomial of (1.3.1) according to Problem **1**) of HW 5. Let

$$\sigma(A) = \{ \lambda \in \mathbf{C} \mid \lambda \text{ is an eigenvalue of } A \},\$$

and

$$S(A) = \sigma(A)/R,$$

where R is the equivalence relation $\lambda R \tau$ if either $\sigma = \tau$ or $\bar{\sigma} = \tau$. Note that we have a partition

$$\sigma(A) = \sigma_1(A) \sqcup \sigma_2(A)$$

where $\sigma_1(A) = \sigma(A) \cap \mathbf{R}$, and $\sigma_2(A) = \sigma(A) \setminus \sigma_A(A)$. Under R, each element of $\sigma_1(A)$ is an equivalence class by itself, whereas, the equivalence classes of elements of $\sigma_2(A)$ consist of two elements, $\{\lambda, \bar{\lambda}\}$. In the same way S(A) partitions into

$$S(A) = S_1(A) \sqcup S_2(A).$$

According to Problem 2) of HW5 there is a one-to-one correspondence between the number of Jordan blocks of A and $\sigma(A)$, because of the special form of Aassociated with (1.3.2) and (1.3.1). Our discussion on real Jordan forms then shows that there is a one-to-one correspondence between S(A) and the number of real Jordan blocks.

Let $[\lambda]$ denote the *R*-equivalence class of $\lambda \in \sigma(A)$. If $[\lambda] \in S_1(A)$, then the real Jordan form associated with $[\lambda]$ is as in [Lecture 11, (1.1.2)] the size being equal to the multiplicity of the real root λ of the characteristic polynomial of *A*. If $\lambda = a + ib \in \sigma_2(A)$, with b > 0 for definiteness, then the real Jordan form associated with $[\lambda] \in S_2(A)$ is as in [Lecture 11, (1.1.5)] with *M* being the matrix in [Lecture 11, (1.1.6)].

Let the Jordan block associated with $s \in S(A)$ be denoted \widetilde{J}_s . With each $s \in S(A)$ there is a well defined multiplicity r_s associated with s, namely the multiplicity of any root λ_s of the characteristic equation of A in the equivalence class s. This is half the size of the Jordan block associated with \widetilde{J}_s if $s_k \in S_2(A)$, and equal to the size of the Jordan block \widetilde{J}_s if $s \in S_1(A)$. If $s \in S_2(A)$, let a_s and

 b_s be real numbers, with $b_s > 0$ such that $s = [a_s + ib_s]$. Since we are insisting b_k is positive, it is well-defined.

From our earlier discussion, it follows that the solutions of (1.3.1) are in the linear span of the set

$$Q = \bigcup_{s \in S_1(A)} \bigcup_{j=0}^{r_s - 1} \{ t^j e^{t\lambda_s} \} \cup \bigcup_{s \in S_2(A)} \bigcup_{j=0}^{r_s - 1} \{ t^j e^{a_s t} \cos b_s t, \ t^j e^{a_s t} \sin b_s t \}.$$

The space of solutions of (1.3.1) is an *n*-dimensional **R**-vector space, and the cardinality of $Q \leq n$. It follows that the cardinality of Q is *n* and Q is a basis for the space of solutions of (1.3.1). In particular, the general solution of (1.3.1) is

$$y(t) = \sum_{s \in S_1(A)} \sum_{j=0}^{r_s - 1} c_{sj} t^j e^{\lambda_s t} + \sum_{s \in S_2(A)} \sum_{j=0}^{r_s - 1} \left(d_{js} t^j e^{a_s t} \cos b_s t + e_{sj} t^j e^{a_s t} \sin b_s t \right),$$

with c_{js} , d_{js} , and e_{js} being arbitrary real constants, uniquely determined by the solution y(t).

1.3.3. The above proves the statements made in the section on (scalar) homogeneous linear DE's with constant coefficients in DEQN Cookbook-II. In particular, the union of the sets labelled R, C, and S in *loc.cit*. form a basis for the solution space of such equations, a fact which is not a *priori* obvious.

References

- [AW] W.A. Adkins and A.H. Weintraub, Agebra, An Approach via Module Theory, Graduate Texts in Mathematics 136, Springer-Verlag, New York, 1992.
- [A1] V. I. Arnold, Ordinary Differential Equations, translated by Richard A. Silverman, MIT Press (also Prentice-Hall, India), Cambridge, MA, U.S.A., 1973.
- [A2] V. I. Arnold, Ordinary Differential Equations, translated by Roger Cooke, Universitext, Springer-Verlag, Berlin, 2006.
- [CL] E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955.
- [G] C.P. Grant, Theory of Ordinary Differential Equations. https://www.math.utah.edu/ ~treiberg/GrantTodes2008.pdf, Brigham Young University.