## LECTURE 12

Date of Lecture: February 10, 2021

As always, $\mathbf{K} \in\{\mathbf{R}, \mathbf{C}\}$.
The symbol is for flagging a cautionary comment or a tricky argument. It occurs in the margins and is Knuth's version of Bourbaki's "dangerous bend symbol".

An $n$-tuple $\left(x_{1}, \ldots, x_{n}\right)$ of symbols ( $x_{i}$ not necessarily real or complex numbers) will also be written as a column vector when convenient. Thus

$$
\left(x_{1}, \ldots, x_{n}\right)=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

A map $\boldsymbol{f}$ from a set $S$ to a product set $T_{1} \times \cdots \times T_{n}$ will often be written as an $n$-tuple $\boldsymbol{f}=\left(f_{1}, \ldots, f_{n}\right)$, with $f_{i}$ a map from $S$ to $T_{i}$, and hence, by the above convention, as a column vector

$$
\boldsymbol{f}=\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right] .
$$

(See Remark 2.2.2 of Lecture 5 of ANA2.)
The default norm on Euclidean spaces of the form $\mathbf{R}^{n}$ is the Euclidean norm $\left\|\|_{2}\right.$ and we will simply denote it as $\|\|$. The space of $\mathbf{K}$-linear transformations from $\mathbf{K}^{n}$ to $\mathbf{K}^{m}$ will be denoted $\operatorname{Hom}_{\mathbf{R}}\left(\mathbf{K}^{n}, \mathbf{K}^{m}\right)$ and will be identified in the standard way with the space of $m \times n$ matrices $M_{m, n}(\mathbf{K})$ and the operator norm ${ }^{1}$ on both spaces will be denoted $\left\|\|_{0}\right.$. If $m=n$, we write $M_{n}(\mathbf{R})$ for $M_{m, n}(\mathbf{R})$, and $L\left(\mathbf{K}^{n}\right)$ for $\operatorname{Hom}_{\mathbf{K}}\left(\mathbf{K}^{n}, \mathbf{K}^{n}\right)$.

Note that $\left(x_{1}, \ldots, x_{n}\right) \neq\left[x_{1} \ldots x_{n}\right]$. Each side is the transpose of the other.

## 1. Applications of real canonical forms to Linear ODEs

See [G, pp.37-40], [CL, Chapter 3] and [A1, Chapter3, § 25] for other material on this topic.
1.1. Exponentials. The following lemma is useful for "computing" exponentials via Jordan decompositions.

Lemma 1.1.1. Let $A \in M_{n}(\mathbf{R}), \Gamma \in G L_{n}(\mathbf{R})$.
(a) $e^{\Gamma A \Gamma^{-1}}=\Gamma e^{A} \Gamma^{-1}$.

[^0](b) If
\[

A=\left[$$
\begin{array}{ccccc}
A_{1} & 0 & & & 0 \\
& A_{2} & 0 & & 0 \\
& & A_{3} & \ddots & \\
& & & \ddots & 0 \\
& & & & A_{t}
\end{array}
$$\right]
\]

then

$$
e^{A}=\left[\begin{array}{ccccc}
e^{A_{1}} & 0 & & & 0 \\
& e^{A_{2}} & 0 & & 0 \\
& & e^{A_{3}} & \ddots & \\
& & & \ddots & 0 \\
& & & & e^{A_{t}}
\end{array}\right]
$$

Proof. For part (a), for each non-negative integer $N$ we have

$$
\sum_{n=0}^{N} \frac{\left(\Gamma A \Gamma^{-1}\right)^{n}}{n!}=\Gamma\left(\sum_{n=0}^{N} \frac{A^{n}}{n!}\right) \Gamma^{-1} .
$$

From item 8 in $\S 1$ of [ANA2, Lecture 7] , the product of matrices respects limits. Let $N \rightarrow \infty$ in the above to get (a).

For (b), let $B_{i}$ be the block diagonal $n \times n$ matrix in which the $A_{k}$ in $A$ are replaced by 0 , for $k \neq i$, and the $i^{\text {th }}$ block is $A_{i}$. Then $B_{1}, \ldots, B_{t}$ commute and their sum is $A$. Therefore, we may assume, without loss of generality that $A_{k}=0$ for $k \geq 2$. Let the size of each block in the decompositions we are considering be $r_{1}, \ldots, r_{t}$. Let

$$
Z_{N}=\sum_{n=0}^{N} \frac{A_{1}^{n}}{n!}-e^{A_{1}} .
$$

Set

$$
E=\left[\begin{array}{ccccc}
e^{A_{1}} & 0 & & & 0 \\
& I_{r_{2}} & 0 & & 0 \\
& & I_{r_{3}} & \ddots & \\
& & & \ddots & 0 \\
& & & & I_{r_{t}}
\end{array}\right]
$$

Then

$$
\sum_{n=0}^{N} \frac{A^{n}}{n!}-E=\left[\begin{array}{ccccc}
Z_{N} & 0 & & & 0 \\
& 0 & 0 & & 0 \\
& & 0 & \ddots & \\
& & & \ddots & 0 \\
& & & & 0
\end{array}\right]
$$

Moreover, it is easy to see that the $\|\cdot\|_{\circ}$ of the matrix on the right is actually $\left\|Z_{N}\right\|_{\text {o }}$. Now, $Z_{N} \rightarrow 0$ as $N \rightarrow \infty$, and hence $\sum_{n=0}^{\infty} \frac{A^{n}}{n!}=E$. Thus $e^{A}=E$, which is what we had to show.
1.2. Structure of solutions of homogeneous linear equations. Let $A$ be a constant $n \times n$ matrix, i.e., $A \in M_{n}(\mathbf{R})$. Consider the associated DE

$$
\begin{equation*}
\dot{\boldsymbol{x}}=A \boldsymbol{x} . \tag{1.2.1}
\end{equation*}
$$

Let the Jordan form of $A$ be

$$
\mathbf{J}=\left[\begin{array}{ccccc}
\widetilde{J}_{1} & 0 & 0 & \ldots & 0 \\
& \widetilde{J}_{2} & 0 & \ldots & 0 \\
& & \ddots & & \\
& & & \widetilde{J}_{t-1} & 0 \\
& & & & \widetilde{J}_{t}
\end{array}\right]
$$

There exists $\Gamma \in G L_{n}(\mathbf{R})$ such that

$$
A=\Gamma \mathbf{J} \Gamma^{-1}
$$

The block $\widetilde{J}_{k}$ are either of the form [Lecture 11, (1.1.2)] (for real eigenvalues $\lambda$ ) or of the form [Lecture 11, (1.1.5)] with $M$ of the form [Lecture 11, (1.1.6)], for eigenvalues $\lambda=a+i b$ with $b \neq 0$. Since solutions of (1.2.1) are of the form $e^{t A} \boldsymbol{x}_{0}$, $\mathbf{x}_{\mathbf{0}} \in \mathbf{R}^{\mathbf{n}}$, we can apply Lemma 1.1.1 to work out the solutions.

If $\widetilde{J}_{k}$ is of the form [Lecture 11, (1.1.2)] with the diagonal entries being $\lambda_{k} \in \mathbf{R}$, then writing $\widetilde{J}_{k}=\lambda_{k} I_{r_{k}}+B$, and using results from Quiz 2, (note $\lambda I_{r_{k}}$ and $B$ commute) we see that

$$
e^{t \widetilde{J}_{k}}=e^{t \lambda_{k}}\left[\begin{array}{ccccc}
1 & t & t^{2} / 2! & \ldots & t^{r_{k}-1} /\left(r_{k}-1\right)! \\
& 1 & t & \ldots & t^{r_{k}-2} /\left(r_{k}-2\right)! \\
& & 1 & \ldots & t^{r_{k}-3} /\left(r_{k}-3\right)! \\
& & & \ddots & t^{2} / 2! \\
& & & & t
\end{array}\right]
$$

If $\widetilde{J}_{k}$ is of the form [Lecture 11, (1.1.5)] with $M$ of the form [Lecture 11, (1.1.6)] with $a=a_{k}$ and $b=b_{k}$, then we know from Problem 4) of HW 5 that

$$
e^{t \widetilde{J}_{k}}=e^{a_{k} t}\left[\begin{array}{ccccc}
B & t B & t^{2} / 2!B & \ldots & t^{r_{k}-1} /\left(r_{k}-1\right)!B \\
& B & t B & \ldots & t^{r_{k}-2} /\left(r_{k}-2\right)!B \\
& & B & \ldots & t^{r_{k}-3} /\left(r_{k}-3\right)!B \\
& & & \ddots & t^{2} / 2!B \\
& & & & t B \\
& & & & B
\end{array}\right]
$$

where

$$
B=\left[\begin{array}{cc}
\cos \left(b_{k} t\right) & \sin \left(b_{k}\right) \\
-\sin \left(b_{k} t\right) & \cos \left(b_{k} t\right)
\end{array}\right]
$$

Using Lemma 1.1 .1 we see that solutions are of the form $\varphi: \mathbf{R} \rightarrow \mathbf{R}^{n}$ where $\varphi_{k}(t)$ is a linear combination of $\left\{t^{i} e^{\lambda_{k} t} \mid i=0, \ldots, r_{k}-1, \lambda_{k} \in \mathbf{R}\right\},\left\{t^{i} e^{a_{k} t} \cos b_{k} t \mid\right.$ $\left.i=0, \ldots, r_{k}-1, \lambda_{k}=a_{k}+i b_{k}, b_{k} \neq 0\right\}$ and $\left\{t^{i} e^{a_{k} t} \sin b_{k} t \mid i=0, \ldots, r_{k}-1, \lambda_{k}=\right.$ $\left.a_{k}+i b_{k}, b_{k} \neq 0\right\}$, as $k$ ranges from 1 to $t$. We are not claiming that every possible linear combination is possible for each entry each independent of other entires. That would give $n^{2}$ degrees of freedom for the number of solutions. Moreover, two distinct real Jordan blocks $\widetilde{J}_{k}$ and $\widetilde{J}_{l}$ may well have the same (real or complex) associated eigenvalue(s).
1.3. Scalar $n^{\text {th }}$ order Linear Differential Equations. Consider the scalar $n^{\text {th }}$ order linear DE with constant coefficiants.

$$
\begin{equation*}
y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{i} y^{\prime}+a_{n} y=0 \tag{1.3.1}
\end{equation*}
$$

As is well-known this is equivalent to the first order linear autonomous DE of the form

$$
\begin{gather*}
\dot{\boldsymbol{x}}=A \boldsymbol{x} .  \tag{1.3.2}\\
A=\left[\begin{array}{ccccc}
0 & \begin{array}{cccc}
1 \\
0 & 1 & & 0 \\
& & \ddots & \ddots
\end{array} \\
& & & \ddots & 1 \\
-a_{0} & -a_{1} & & \cdots & -a_{n-1}
\end{array}\right]
\end{gather*}
$$

If $\boldsymbol{\psi}: \mathbf{R} \rightarrow \mathbf{R}^{n}$ is a solution of (1.3.2), then $\varphi=\psi_{1}$ is a solution of (1.3.1). Conversely, if $\varphi: \mathbf{R} \rightarrow \mathbf{R}$ is a solution of (1.3.1), then $\psi: \mathbf{R} \rightarrow \mathbf{R}^{n}$ with $\psi_{i}=\varphi^{(i-1)}$, $i=1, \ldots, n$, is a solution of (1.3.2) where $\varphi^{(0)}:=\varphi$. Moroever, the characteristic polynomial of $A$ is $\pm$ the characteristic polynomial of (1.3.1) according to Problem 1) of HW 5. Let

$$
\sigma(A)=\{\lambda \in \mathbf{C} \mid \lambda \text { is an eigenvalue of } A\}
$$

and

$$
S(A)=\sigma(A) / R
$$

where $R$ is the equivalence relation $\lambda R \tau$ if either $\sigma=\tau$ or $\bar{\sigma}=\tau$. Note that we have a partition

$$
\sigma(A)=\sigma_{1}(A) \sqcup \sigma_{2}(A)
$$

where $\sigma_{1}(A)=\sigma(A) \cap \mathbf{R}$, and $\sigma_{2}(A)=\sigma(A) \backslash \sigma_{A}(A)$. Under $R$, each element of $\sigma_{1}(A)$ is an equivalence class by itself, whereas, the equivalence classes of elements of $\sigma_{2}(A)$ consist of two elements, $\{\lambda, \bar{\lambda}\}$. In the same way $S(A)$ partitions into

$$
S(A)=S_{1}(A) \sqcup S_{2}(A)
$$

According to Problem 2) of HW5 there is a one-to-one correspondence between the number of Jordan blocks of $A$ and $\sigma(A)$, because of the special form of $A$ associated with (1.3.2) and (1.3.1). Our discussion on real Jordan forms then shows that there is a one-to-one correspondence between $S(A)$ and the number of real Jordan blocks.

Let $[\lambda]$ denote the $R$-equivalence class of $\lambda \in \sigma(A)$. If $[\lambda] \in S_{1}(A)$, then the real Jordan form associated with $[\lambda]$ is as in [Lecture 11, (1.1.2)] the size being equal to the multiplicity of the real root $\lambda$ of the characteristic polynomial of $A$. If $\lambda=a+i b \in \sigma_{2}(A)$, with $b>0$ for definiteness, then the real Jordan form associated with $[\lambda] \in S_{2}(A)$ is as in [Lecture 11, (1.1.5)] with $M$ being the matrix in [Lecture 11, (1.1.6)].

Let the Jordan block associated with $s \in S(A)$ be denoted $\widetilde{J}_{s}$. With each $s \in S(A)$ there is a well defined multiplicity $r_{s}$ associated with $s$, namely the multiplicity of any root $\lambda_{s}$ of the characteristic equation of $A$ in the equivalence class $s$. This is half the size of the Jordan block associated with $\widetilde{J}_{s}$ if $s_{k} \in S_{2}(A)$, and equal to the size of the Jordan block $\widetilde{J}_{s}$ if $s \in S_{1}(A)$. If $s \in S_{2}(A)$, let $a_{s}$ and
$b_{s}$ be real numbers, with $b_{s}>0$ such that $s=\left[a_{s}+i b_{s}\right]$. Since we are insisting $b_{k} \mathrm{i}$ is positive, it is well-defined.

From our earlier discussion, it follows that the solutions of (1.3.1) are in the linear span of the set

$$
Q=\bigcup_{s \in S_{1}(A)} \bigcup_{j=0}^{r_{s}-1}\left\{t^{j} e^{t \lambda_{s}}\right\} \cup \bigcup_{s \in S_{2}(A)} \bigcup_{j=0}^{r_{s}-1}\left\{t^{j} e^{a_{s} t} \cos b_{s} t, t^{j} e^{a_{s} t} \sin b_{s} t\right\}
$$

The space of solutions of (1.3.1) is an $n$-dimensional $\mathbf{R}$-vector space, and the cardinality of $Q \leq n$. It follows that the cardinality of $Q$ is $n$ and $Q$ is a basis for the space of solutions of (1.3.1). In particular, the general solution of (1.3.1) is

$$
y(t)=\sum_{s \in S_{1}(A)} \sum_{j=0}^{r_{s}-1} c_{s j} t^{j} e^{\lambda_{s} t}+\sum_{s \in S_{2}(A)} \sum_{j=0}^{r_{s}-1}\left(d_{j s} t^{j} e^{a_{s} t} \cos b_{s} t+e_{s j} t^{j} e^{a_{s} t} \sin b_{s} t\right)
$$

with $c_{j s}, d_{j s}$, and $e_{j s}$ being arbitrary real constants, uniquely determined by the solution $y(t)$.
1.3.3. The above proves the statements made in the section on (scalar) homogeneous linear DE's with constant coefficients in DEQN Cookbook-II. In particular, the union of the sets labelled $R, C$, and $S$ in loc.cit. form a basis for the solution space of such equations, a fact which is not a priori obvious.

## References

[AW] W.A. Adkins and A.H. Weintraub, Agebra, An Approach via Module Theory, Graduate Texts in Mathematics 136, Springer-Verlag, New York, 1992.
[A1] V. I. Arnold, Ordinary Differential Equations, translated by Richard A. Silverman, MIT Press (also Prentice-Hall, India), Cambridge,MA, U.S.A., 1973.
[A2] V. I. Arnold, Ordinary Differential Equations, translated by Roger Cooke, Universitext, Springer-Verlag, Berlin, 2006.
[CL] E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGrawHill, New York, 1955.
[G] C.P. Grant, Theory of Ordinary Differential Equations. https://www.math.utah.edu/ ~treiberg/GrantTodes2008.pdf, Brigham Young University.


[^0]:    ${ }^{1}$ See $\S \S 2.1$ of Lecture 5 of ANA2.

