LECTURE 11

Date of Lecture: February 8, 2021

As always, $\mathbf{K} \in\{\mathbf{R}, \mathbf{C}\}$.
The symbol ${ }^{2}$ is for flagging a cautionary comment or a tricky argument. It occurs in the margins and is Knuth's version of Bourbaki's "dangerous bend symbol".

An n-tuple $\left(x_{1}, \ldots, x_{n}\right)$ of symbols (x_{i} not necessarily real or complex numbers) will also be written as a column vector when convenient. Thus

$$
\left(x_{1}, \ldots, x_{n}\right)=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

A map \boldsymbol{f} from a set S to a product set $T_{1} \times \cdots \times T_{n}$ will often be written as an n-tuple $\boldsymbol{f}=\left(f_{1}, \ldots, f_{n}\right)$, with f_{i} a map from S to T_{i}, and hence, by the above convention, as a column vector

$$
\boldsymbol{f}=\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right]
$$

(See Remark 2.2.2 of Lecture 5 of ANA2.)
The default norm on Euclidean spaces of the form \mathbf{R}^{n} is the Euclidean norm $\left\|\|_{2}\right.$ and we will simply denote it as $\|\|$. The space of \mathbf{K}-linear transformations from \mathbf{K}^{n} to \mathbf{K}^{m} will be denoted $\operatorname{Hom}_{\mathbf{R}}\left(\mathbf{K}^{n}, \mathbf{K}^{m}\right)$ and will be identified in the standard way with the space of $m \times n$ matrices $M_{m, n}(\mathbf{K})$ and the operator norm ${ }^{1}$ on both spaces will be denoted $\left\|\|_{0}\right.$. If $m=n$, we write $M_{n}(\mathbf{R})$ for $M_{m, n}(\mathbf{R})$, and $L\left(\mathbf{K}^{n}\right)$ for $\operatorname{Hom}_{\mathbf{K}}\left(\mathbf{K}^{n}, \mathbf{K}^{n}\right)$.

Note that $\left(x_{1}, \ldots, x_{n}\right) \neq\left[x_{1} \ldots x_{n}\right]$. Each side is the transpose of the other.

1. Real canonical forms

I assume you know what Jordan forms are over algebraically closed fields. Since \mathbf{R} is not algebraically closed, a little effort is needed to get real canonical forms. A good reference for this topic is [AW].
1.1. Let $T \in L\left(\mathbf{R}^{n}\right)$ and let $A \in M_{n}(\mathbf{R})$ be its matrix with respect to the standard basis on \mathbf{R}^{n}, where $M_{n}(\mathbf{R})$ is the ring of $n \times n$ real matrices. Regarding A as a complex matrix, and letting $T_{\mathbf{C}} \in L\left(\mathbf{C}^{n}\right)$ be the corresponding linear operator on $\mathbf{C}^{n},{ }^{2}$ we know that \mathbf{C}^{n} has an ordered basis \mathscr{B} such that the matrix of T with

[^0]respect to \mathscr{B} is a Jordan canonical form, i.e., the matrix of $T_{\mathbf{C}}$ with respect to \mathscr{B} looks like a block diagonal matrix
\[

\left[$$
\begin{array}{ccccc}
J_{1} & 0 & & & 0 \tag{1.1.1}\\
& J_{2} & 0 & & 0 \\
& & J_{3} & \ddots & \\
& & & \ddots & 0 \\
& & & & J_{t}
\end{array}
$$\right]
\]

where each block (the so-called Jordan block) has the form.

$$
J=\left[\begin{array}{lllll}
\lambda & 1 & & & 0 \tag{1.1.2}\\
& \lambda & 1 & & \\
& & \lambda & \ddots & \\
& & & \ddots & 1 \\
& & & & \lambda
\end{array}\right]
$$

Note that λ has to be an eigenvalue of T (or $T_{\mathbf{C}}$), and every eigenvalue is accounted for in some Jordan block - in perhaps more than one Jordan block. The number of Jordan blocks corresponding to a fixed eigenvalue λ is known to be the geometric multiplicity of λ.

The Jordan decomposition (1.1.1) decomposes \mathbf{C}^{n} into a direct sum

$$
\begin{equation*}
\mathbf{C}^{n}=V_{1} \oplus \cdots \oplus V_{t} \tag{1.1.3}
\end{equation*}
$$

with V_{k} corresponding to the Jordan block $J_{k}, k=1, \ldots, t$ and J_{k} can be regarded as a linear operator on V_{k}. The sets $\mathscr{B} \cap V_{k}, k=1, \ldots, t$ partition \mathscr{B} into disjoint sets, and for each $k, \mathscr{B} \cap V_{k}$ is a basis of V_{k}. In other words, if $\mathscr{B} \cap V_{k}=\left\{\boldsymbol{u}_{1}^{k}, \boldsymbol{u}_{2}^{k}, \ldots, \boldsymbol{u}_{r_{k}}^{k}\right\}$, where we list the elements according to the order in \mathscr{B}, then $T_{\mathbf{C}} \boldsymbol{u}_{j}^{k}=\sum_{i=1}^{r_{k}} a_{i j}^{(k)} \boldsymbol{u}_{i}^{k}$, where $J_{k}=\left(a_{i j}^{(k)}\right)$. Moreover, \mathscr{B} can be so chosen that the conjugates $\overline{\boldsymbol{u}}_{i}^{k}$ of $\boldsymbol{u}_{i}^{k}, j=1, \ldots, r_{k}$ are also in \mathscr{B} and form an ordered basis for some V_{l} in the decomposition (1.1.3) above. If the eigenvalue corresponding to V_{k} is real, then $V_{l}=V_{k}$, otherwise $V_{l} \neq V_{k}$, where l and k are related as above.

Let V be one of the V_{k}, and without loss of generality, assume $V=V_{1}$. Let J be the corresponding Jordan block, i.e., J is of the form (1.1.2). Assume that the eigenvalue λ corresponding to J is not real, i.e.,

$\lambda \notin \mathbf{R}$.

Let $\mathscr{B} \cap V=\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{r}\right\}$, the ordering of the subscripts respecting the order in \mathscr{B}. From the form of J we see that

$$
\begin{align*}
T_{\mathbf{C}}\left(\boldsymbol{u}_{1}\right) & =\lambda \boldsymbol{u}_{1} \\
T_{\mathbf{C}}\left(\boldsymbol{u}_{i}\right) & =\boldsymbol{u}_{i-1}+\lambda \boldsymbol{u}_{i}, \quad i=2, \ldots, r . \tag{*}
\end{align*}
$$

From what we said above about \mathscr{B}, if $\boldsymbol{w}_{i}:=\overline{\boldsymbol{u}}_{i}, i=1, \ldots, r$ then $\left\{\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{r}\right\}$ is an ordered basis for some V_{l} occurring in the decomposition (1.1.3). Since $\lambda \notin \mathbf{R}$, we have $V_{l} \neq V$ and so we may as well assume $l=2$, and write $W=V_{2}$. We have

$$
\begin{align*}
T_{\mathbf{C}}\left(\boldsymbol{w}_{1}\right) & =\bar{\lambda} \boldsymbol{w}_{1} \\
T_{\mathbf{C}}\left(\boldsymbol{w}_{i}\right) & =\boldsymbol{w}_{i-1}+\bar{\lambda} \boldsymbol{w}_{i}, \quad i=2, \ldots, r
\end{align*}
$$

Note that

$$
\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{r}, \boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{r}\right\}
$$

is a basis for $V \oplus W \subset \mathbf{C}^{n}$.
For $j \in\{1, \ldots, r\}$, let

$$
\boldsymbol{c}_{j}=\frac{1}{2}\left(\boldsymbol{u}_{j}+\boldsymbol{w}_{j}\right) \quad \text { and } \quad \boldsymbol{d}_{j}=\frac{1}{2 i}\left(\boldsymbol{u}_{j}-\boldsymbol{w}_{j}\right) .
$$

Then,

$$
\boldsymbol{u}_{j}=\boldsymbol{c}_{j}+i \boldsymbol{d}_{j} \quad \text { and } \quad \boldsymbol{w}_{j}=\boldsymbol{c}_{j}-i \boldsymbol{d}_{j} \quad(j=1, \ldots, r)
$$

It follows that the span of $\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{r}, \boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{r}\right\}$ is the same as the span of $\left\{\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{r}, \boldsymbol{d}_{1}, \ldots, \boldsymbol{d}_{r}\right\}$. In particular, $\left\{\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{r}, \boldsymbol{d}_{1}, \ldots, \boldsymbol{d}_{r}\right\}$ is a basis for $V \oplus W$. We point out that $\boldsymbol{c}_{j}, \boldsymbol{d}_{j} \in \mathbf{R}^{n}$.

If $\lambda=a+i b$, an easy computation shows that

$$
T \boldsymbol{c}_{j}= \begin{cases}a \boldsymbol{c}_{j}-b \boldsymbol{d}_{j} & \text { if } j=1 \\ \boldsymbol{c}_{j-1}+a \boldsymbol{c}_{j}-b \boldsymbol{d}_{j} & \text { if } 2 \leq j \leq r\end{cases}
$$

and

$$
T \boldsymbol{d}_{j}= \begin{cases}b \boldsymbol{c}_{j}+a \boldsymbol{d}_{j} & \text { if } j=1 \\ \boldsymbol{d}_{j-1}+b \boldsymbol{c}_{j}+a \boldsymbol{d}_{j} & \text { if } 2 \leq j \leq r\end{cases}
$$

If we modify our basis so that the first $2 r$ members are

$$
\begin{equation*}
\boldsymbol{c}_{1}, \boldsymbol{d}_{1}, \boldsymbol{c}_{2}, \boldsymbol{d}_{2}, \ldots, \boldsymbol{c}_{r}, \boldsymbol{d}_{r} \tag{1.1.4}
\end{equation*}
$$

and do this for every pair of conjugate eigenvalues which are not real, then the the matrix of T with respect to this basis is such that the the blocks corresponding to segments like (1.1.4) have the form:

$$
\widetilde{J}=\widetilde{J}(\lambda, \bar{\lambda})=\left[\begin{array}{ccccc}
M & I_{2} & & & 0 \tag{1.1.5}\\
& M & I_{2} & & \\
& & M & \ddots & \\
& & & \ddots & I_{2} \\
& & & & M
\end{array}\right]
$$

where

$$
M=\left[\begin{array}{cc}
a & b \tag{1.1.6}\\
-b & a
\end{array}\right]
$$

Blocks of the form (1.1.2), when $\lambda \in \mathbf{R}$, or of the form (1.1.5), with M as in (1.1.6) when $\lambda \notin \mathbf{R}$, are called real Jordan blocks or real canonical blocks. When we rewrite the matrix of T in terms of this basis, the resulting matrix is called the real Jordan form or the the real canonical form of A. It is a block diagonnal matrix where the blocks are real canonical forms. See [AW, pp. 254-256] for details about real Jordan canonical forms.

References

[AW] W.A. Adkins and A.H. Weintraub, Agebra, An Approach via Module Theory, Graduate Texts in Mathematics 136, Springer-Verlag, New York, 1992.
[A1] V. I. Arnold, Ordinary Differential Equations, translated by Richard A. Silverman, MIT Press (also Prentice-Hall, India), Cambridge,MA, U.S.A., 1973.
[A2] V. I. Arnold, Ordinary Differential Equations, translated by Roger Cooke, Universitext, Springer-Verlag, Berlin, 2006.

[^0]: ${ }^{1}$ See $\S \S 2.1$ of Lecture 5 of ANA2.
 ${ }^{2}$ Let $\boldsymbol{u} \in \mathbf{C}^{n}$ and suppose $\boldsymbol{u}=\boldsymbol{c}+i \boldsymbol{d}$, with $\boldsymbol{c}, \boldsymbol{d} \in \mathbf{R}^{n}$ be its decomposition into real and imaginary parts. Then $T_{\mathbf{C}} \boldsymbol{u}=T \boldsymbol{c}+i T \boldsymbol{u}$.

