Date of Lecture: February 8, 2021

As always, $K \in \{R, C\}$.

The symbol $\$ is for flagging a cautionary comment or a tricky argument. It occurs in the margins and is Knuth's version of Bourbaki's "dangerous bend symbol".

An *n*-tuple (x_1, \ldots, x_n) of symbols $(x_i \text{ not necessarily real or complex numbers)} will also be written as a column vector when convenient. Thus$

$$(x_1,\ldots,x_n) = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}.$$

A map f from a set S to a product set $T_1 \times \cdots \times T_n$ will often be written as an n-tuple $f = (f_1, \ldots, f_n)$, with f_i a map from S to T_i , and hence, by the above convention, as a column vector

$$m{f} = egin{bmatrix} f_1 \ dots \ f_n \end{bmatrix}.$$

(See Remark 2.2.2 of Lecture 5 of ANA2.)

The default norm on Euclidean spaces of the form \mathbf{R}^n is the Euclidean norm $\| \|_2$ and we will simply denote it as $\| \|$. The space of \mathbf{K} -linear transformations from \mathbf{K}^n to \mathbf{K}^m will be denoted $\mathrm{Hom}_{\mathbf{R}}(\mathbf{K}^n,\mathbf{K}^m)$ and will be identified in the standard way with the space of $m \times n$ matrices $M_{m,n}(\mathbf{K})$ and the operator norm¹ on both spaces will be denoted $\| \|_{\mathbf{o}}$. If m = n, we write $M_n(\mathbf{R})$ for $M_{m,n}(\mathbf{R})$, and $L(\mathbf{K}^n)$ for $\mathrm{Hom}_{\mathbf{K}}(\mathbf{K}^n,\mathbf{K}^n)$.

Note that $(x_1, \ldots, x_n) \neq [x_1 \ldots x_n]$. Each side is the transpose of the other.

1. Real canonical forms

I assume you know what Jordan forms are over algebraically closed fields. Since \mathbf{R} is not algebraically closed, a little effort is needed to get real canonical forms. A good reference for this topic is $[\mathbf{AW}]$.

1.1. Let $T \in L(\mathbf{R}^n)$ and let $A \in M_n(\mathbf{R})$ be its matrix with respect to the standard basis on \mathbf{R}^n , where $M_n(\mathbf{R})$ is the ring of $n \times n$ real matrices. Regarding A as a complex matrix, and letting $T_{\mathbf{C}} \in L(\mathbf{C}^n)$ be the corresponding linear operator on \mathbf{C}^n , we know that \mathbf{C}^n has an ordered basis \mathscr{B} such that the matrix of T with

1

¹See §§2.1 of Lecture 5 of ANA2.

²Let $u \in \mathbb{C}^n$ and suppose u = c + id, with $c, d \in \mathbb{R}^n$ be its decomposition into real and imaginary parts. Then $T_{\mathbb{C}}u = Tc + iTu$.

respect to \mathscr{B} is a Jordan canonical form, i.e., the matrix of $T_{\mathbf{C}}$ with respect to \mathscr{B} looks like a block diagonal matrix

(1.1.1)
$$\begin{bmatrix} J_1 & 0 & & & 0 \\ & J_2 & 0 & & 0 \\ & & J_3 & \ddots & \\ & & & \ddots & 0 \\ & & & & J_t \end{bmatrix}$$

where each block (the so-called Jordan block) has the form.

(1.1.2)
$$J = \begin{bmatrix} \lambda & 1 & & & 0 \\ & \lambda & 1 & & \\ & & \lambda & \ddots & \\ & & & \ddots & 1 \\ & & & & \lambda \end{bmatrix}$$

Note that λ has to be an eigenvalue of T (or $T_{\mathbf{C}}$), and every eigenvalue is accounted for in some Jordan block – in perhaps more than one Jordan block. The number of Jordan blocks corresponding to a fixed eigenvalue λ is known to be the geometric multiplicity of λ .

The Jordan decomposition (1.1.1) decomposes \mathbb{C}^n into a direct sum

$$\mathbf{C}^n = V_1 \oplus \cdots \oplus V_t$$

with V_k corresponding to the Jordan block J_k , $k=1,\ldots,t$ and J_k can be regarded as a linear operator on V_k . The sets $\mathcal{B} \cap V_k$, $k=1,\ldots,t$ partition \mathcal{B} into disjoint sets, and for each k, $\mathcal{B} \cap V_k$ is a basis of V_k . In other words, if $\mathcal{B} \cap V_k = \{ \boldsymbol{u}_1^k, \boldsymbol{u}_2^k, \ldots, \boldsymbol{u}_{r_k}^k \}$, where we list the elements according to the order in \mathcal{B} , then $T_{\mathbf{C}}\boldsymbol{u}_j^k = \sum_{i=1}^{r_k} a_{ij}^{(k)} \boldsymbol{u}_i^k$, where $J_k = (a_{ij}^{(k)})$. Moreover, \mathcal{B} can be so chosen that the conjugates $\bar{\boldsymbol{u}}_i^k$ of \boldsymbol{u}_i^k , $j=1,\ldots,r_k$ are also in \mathcal{B} and form an ordered basis for some V_l in the decomposition (1.1.3) above. If the eigenvalue corresponding to V_k is real, then $V_l = V_k$, otherwise $V_l \neq V_k$, where l and k are related as above.

Let V be one of the V_k , and without loss of generality, assume $V = V_1$. Let J be the corresponding Jordan block, i.e., J is of the form (1.1.2). Assume that the eigenvalue λ corresponding to J is not real, i.e.,

$$\lambda \notin \mathbf{R}$$
.

Let $\mathscr{B} \cap V = \{u_1, \dots, u_r\}$, the ordering of the subscripts respecting the order in \mathscr{B} . From the form of J we see that

(*)
$$T_{\mathbf{C}}(\boldsymbol{u}_1) = \lambda \boldsymbol{u}_1$$
$$T_{\mathbf{C}}(\boldsymbol{u}_i) = \boldsymbol{u}_{i-1} + \lambda \boldsymbol{u}_i, \quad i = 2, \dots, r.$$

From what we said above about \mathscr{B} , if $\mathbf{w}_i := \bar{\mathbf{u}}_i$, i = 1, ..., r then $\{\mathbf{w}_1, ..., \mathbf{w}_r\}$ is an ordered basis for some V_l occurring in the decomposition (1.1.3). Since $\lambda \notin \mathbf{R}$, we have $V_l \neq V$ and so we may as well assume l = 2, and write $W = V_2$. We have

(†)
$$T_{\mathbf{C}}(\boldsymbol{w}_1) = \bar{\lambda} \boldsymbol{w}_1$$
$$T_{\mathbf{C}}(\boldsymbol{w}_i) = \boldsymbol{w}_{i-1} + \bar{\lambda} \boldsymbol{w}_i, \quad i = 2, \dots, r.$$

Note that

$$\{oldsymbol{u}_1,\ldots,oldsymbol{u}_r,oldsymbol{w}_1,\ldots,oldsymbol{w}_r\}$$

is a basis for $V \oplus W \subset \mathbf{C}^n$.

For $j \in \{1, ..., r\}$, let

$$c_j = \frac{1}{2}(u_j + w_j)$$
 and $d_j = \frac{1}{2i}(u_j - w_j)$.

Then,

$$u_j = c_j + id_j$$
 and $w_j = c_j - id_j$ $(j = 1, ..., r)$.

It follows that the span of $\{u_1,\ldots,u_r,w_1,\ldots,w_r\}$ is the same as the span of $\{c_1,\ldots,c_r,d_1,\ldots,d_r\}$. In particular, $\{c_1,\ldots,c_r,d_1,\ldots,d_r\}$ is a basis for $V\oplus W$. We point out that $c_j,d_j\in\mathbf{R}^n$.

If $\lambda = a + ib$, an easy computation shows that

$$T\mathbf{c}_{j} = \begin{cases} a\mathbf{c}_{j} - b\mathbf{d}_{j} & \text{if } j = 1\\ \mathbf{c}_{j-1} + a\mathbf{c}_{j} - b\mathbf{d}_{j} & \text{if } 2 \leq j \leq r \end{cases}$$

and

$$Toldsymbol{d}_j = egin{cases} boldsymbol{c}_j + aoldsymbol{d}_j & ext{if } j = 1 \ oldsymbol{d}_{j-1} + boldsymbol{c}_j + aoldsymbol{d}_j & ext{if } 2 \leq j \leq r. \end{cases}$$

If we modify our basis so that the first 2r members are

$$(1.1.4) c_1, d_1, c_2, d_2, \dots, c_r, d_r$$

and do this for every pair of conjugate eigenvalues which are not real, then the the matrix of T with respect to this basis is such that the blocks corresponding to segments like (1.1.4) have the form:

(1.1.5)
$$\widetilde{J} = \widetilde{J}(\lambda, \bar{\lambda}) = \begin{bmatrix} M & I_2 & & 0 \\ & M & I_2 & \\ & & M & \ddots \\ & & \ddots & I_2 \\ & & & M \end{bmatrix}$$

where

$$(1.1.6) M = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}.$$

Blocks of the form (1.1.2), when $\lambda \in \mathbf{R}$, or of the form (1.1.5), with M as in (1.1.6) when $\lambda \notin \mathbf{R}$, are called *real Jordan blocks* or *real canonical blocks*. When we rewrite the matrix of T in terms of this basis, the resulting matrix is called the *real Jordan form* or the *the real canonical form* of A. It is a block diagonnal matrix where the blocks are real canonical forms. See [AW, pp. 254–256] for details about real Jordan canonical forms.

References

- [AW] W.A. Adkins and A.H. Weintraub, Agebra, An Approach via Module Theory, Graduate Texts in Mathematics 136, Springer-Verlag, New York, 1992.
- [A1] V. I. Arnold, Ordinary Differential Equations, translated by Richard A. Silverman, MIT Press (also Prentice-Hall, India), Cambridge, MA, U.S.A., 1973.
- [A2] V. I. Arnold, Ordinary Differential Equations, translated by Roger Cooke, Universitext, Springer-Verlag, Berlin, 2006.