LECTURE 11

Date of Lecture: February 8, 2021

As always, K € {R, C}.

The symbol g% is for flagging a cautionary comment or a tricky argument. It
occurs in the margins and is Knuth’s version of Bourbaki’s “dangerous bend sym-
bol”.

An n-tuple (21, ...,x,) of symbols (z; not necessarily real or complex numbers)
will also be written as a column vector when convenient. Thus

1
(1, yapn) =
Ln
A map f from a set S to a product set T} x --- x T}, will often be written as

an n-tuple f = (f1,..., fn), with f; a map from S to T}, and hence, by the above
convention, as a column vector

h

r=|:
fn

(See Remark 2.2.2 of Lecture 5 of ANA2.)

The default norm on Euclidean spaces of the form R™ is the Euclidean norm || |2
and we will simply denote it as || ||. The space of K-linear transformations from
K" to K™ will be denoted Homg (K™, K™) and will be identified in the standard
way with the space of m x n matrices M,, ,,(K) and the operator norm' on both
spaces will be denoted || ||o. If m = n, we write M, (R) for M,, ,(R), and L(K")
for Homg (K™, K").

Note that (z1,...,z,) # [x1 ... z,]. Each side is the transpose of the other.

1. Real canonical forms

I assume you know what Jordan forms are over algebraically closed fields. Since
R is not algebraically closed, a little effort is needed to get real canonical forms. A
good reference for this topic is [AW].

1.1. Let T € L(R™) and let A € M,,(R) be its matrix with respect to the standard
basis on R"™, where M, (R) is the ring of n x n real matrices. Regarding A as a
complex matrix, and letting T¢ € L(C"™) be the corresponding linear operator on
C".2 we know that C™ has an ordered basis # such that the matrix of T with

1See §§2.1 of Lecture 5 of ANA2.
2Let uw € C" and suppose u = ¢ + id, with ¢,d € R"™ be its decomposition into real and
imaginary parts. Then Tcu = Tc + iTu.
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respect to & is a Jordan canonical form, i.e., the matrix of T with respect to %
looks like a block diagonal matrix

Ji 0 0
Jo 0 0
(1.1.1) Js
0
Ji
where each block (the so-called Jordan block) has the form.
Al 0
Al
(1.1.2) J= A
1
A

Note that A has to be an eigenvalue of T' (or T¢), and every eigenvalue is accounted
for in some Jordan block — in perhaps more than one Jordan block. The number of
Jordan blocks corresponding to a fixed eigenvalue )\ is known to be the geometric
multiplicity of A.

The Jordan decomposition (1.1.1) decomposes C™ into a direct sum

(1.1.3) C'=V @V

with Vi corresponding to the Jordan block Jg, k& = 1,...,¢t and Ji can be re-
garded as a linear operator on Vi. The sets ZN Vg, k = 1,...,t partition £
into disjoint sets, and for each k, £ N Vj is a basis of V. In other words, if
BNV ={ub ub ..., uffk , where we list the elements according to the order in

2, then Tcu;? =3k agf)uf, where J, = (az(f)). Moreover, % can be so chosen
that the conjugates u¥ of u¥, j = 1,... 7 are also in % and form an ordered basis
for some V; in the decomposition (1.1.3) above. If the eigenvalue corresponding to
Vi is real, then V; = Vi, otherwise V| # Vi, where [ and k are related as above.
Let V be one of the Vi, and without loss of generality, assume V = V;. Let J
be the corresponding Jordan block, i.e., J is of the form (1.1.2). Assume that the

eigenvalue A corresponding to J is not real, i.e.,
A é¢R.

Let NV = {uy,...,u,}, the ordering of the subscripts respecting the order in
%B. From the form of J we see that

( ) Tc(ul) = )\Ul
*
Tc(ui):ui_l—k/\ui, Z'=27...,’I".

From what we said above about 4, if w,;:= @;, i =1,...,r then {wy,...,w,} is
an ordered basis for some V; occurring in the decomposition (1.1.3). Since A ¢ R,
we have V; # V and so we may as well assume | = 2, and write W = V5. We have

TC ('wl) = ;\'wl

()

Tc('wi):wi,l—l—;\wi, t=2,...,T.
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Note that

{ug,..., U, wq,...,w.}
is a basis for Vo W c C™.
For j € {1,...,7}, let
1 1
¢;=5(uj+w;) and dj = -(u; —wj).
Then,
u; =c; +id; and w; =c; —id; (G=1,...,r).

It follows that the span of {u1,...,u,,w1,...,w,} is the same as the span of

{e1,...,¢r,dq,...,d.}. In particular, {¢1,...,¢.,d1,...,d,} is a basis for V@ W.
We point out that c¢;,d; € R™.
If A = a +ib, an easy computation shows that
ch _ CLC]' — bdj lfj = ].
cj—1+ac; —bd; if2<j5<r
and
de: ij‘l-adj lfj:].
dj_1+bcj+ad; if2<j5<r.
If we modify our basis so that the first 2r members are
(114) Cl7d1,02,d27...7cr7dr
and do this for every pair of conjugate eigenvalues which are not real, then the the

matrix of T" with respect to this basis is such that the the blocks corresponding to
segments like (1.1.4) have the form:

M I 0
M I
(1.1.5) J=J\N) = M
I
M
where
a b
(1.1.6) M = [_b a} .

Blocks of the form (1.1.2), when A € R, or of the form (1.1.5), with M as in (1.1.6)
when A ¢ R, are called real Jordan blocks or real canonical blocks. When we re-
write the matrix of T in terms of this basis, the resulting matrix is called the real
Jordan form or the the real canonical form of A. It is a block diagonnal matrix
where the blocks are real canonical forms. See [AW, pp. 254-256] for details about
real Jordan canonical forms.
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