LECTURE 10

Date of Lecture: February 3, 2019

As always, $\mathbf{K} \in {\{\mathbf{R}, \mathbf{C}\}}$.

The symbol P is for flagging a cautionary comment or a tricky argument. It occurs in the margins and is Knuth's version of Bourbaki's "dangerous bend symbol".

An *n*-tuple (x_1, \ldots, x_n) of symbols $(x_i \text{ not necessarily real or complex numbers}) will also be written as a column vector when convenient. Thus$

$$(x_1,\ldots,x_n) = \begin{bmatrix} x_1\\ \vdots\\ x_n \end{bmatrix}.$$

A map f from a set S to a product set $T_1 \times \cdots \times T_n$ will often be written as an *n*-tuple $f = (f_1, \ldots, f_n)$, with f_i a map from S to T_i , and hence, by the above convention, as a column vector

$$oldsymbol{f} = egin{bmatrix} f_1 \ dots \ f_n \end{bmatrix}.$$

(See Remark 2.2.2 of Lecture 5 of ANA2.)

The default norm on Euclidean spaces of the form \mathbf{R}^n is the Euclidean norm $\| \|_2$ and we will simply denote it as $\| \|$. The space of **K**-linear transformations from \mathbf{K}^n to \mathbf{K}^m will be denoted $\operatorname{Hom}_{\mathbf{R}}(\mathbf{K}^n, \mathbf{K}^m)$ and will be identified in the standard way with the space of $m \times n$ matrices $M_{m,n}(\mathbf{K})$ and the operator norm¹ on both spaces will be denoted $\| \|_{\circ}$. If m = n, we write $M_n(\mathbf{R})$ for $M_{m,n}(\mathbf{R})$, and $L(\mathbf{K}^n)$ for $\operatorname{Hom}_{\mathbf{K}}(\mathbf{K}^n, \mathbf{K}^n)$.

Ś

Note that $(x_1, \ldots, x_n) \neq [x_1 \ldots x_n]$. Each side is the transpose of the other.

1. The Exponential Map

1.1. Fix $n \in \mathbf{N}$. For R > 0, let $B_R = \{T \in L(\mathbf{K}^n) \mid ||T||_{\circ} \leq R\}$. Let $T \in B_R$. Let

$$S_k(T) = \sum_{i=0}^k \frac{T^m}{m!}.$$

¹See §§2.1 of Lecture 5 of ANA2.

For $0 < l \leq k$ we have

$$\|S_k(T) - S_l(T)\|_{\circ} = \left\|\sum_{m=l+1}^n \frac{T^m}{m!}\right\|_{\circ}$$

$$(\dagger) \qquad \leq \sum_{m=l+1}^n \left\|\frac{T^m}{m!}\right\|_{\circ}$$

$$\leq \sum_{m=l+1}^n \frac{R^m}{m!}$$

Given $\epsilon > 0$, we can find N such that for $N \leq l \leq k$, $\sum_{m=l+1}^{n} \frac{R^m}{m!} < \epsilon$. Since N does not depend upon T, it follows from (†) that $\{S_m\}$ is unformly Cauchy on B_R . Since $L(\mathbf{K}^n)$ is complete (being a finite dimensional **K**-vector space), this means $\{S_m(T)\}$ converges and the convergence is uniform on B_R . Another way of saying this is that the series $\sum_{m=0}^{\infty} \frac{T^m}{m!}$ converges uniformly on compact subsets of $L(\mathbf{K}^n)$. This allows to make the following definition.

Definition 1.1.1. For $T \in L(\mathbf{K}^n)$ the exponential e^T of T is the element of $L(\mathbf{K}^n)$ given by the formula

$$e^T = \sum_{m=0}^{\infty} \frac{T^m}{m!}.$$

Theorem 1.1.2. The exponential series $\sum_{m=0}^{\infty} T^m/m!$ converges uniformly on compact subsets of $L(\mathbf{K}^n)$. Moreover, if S and T are elements of $L(\mathbf{K}^n)$ such that ST = TS then

$$e^{T+S} = e^T e^S.$$

Proof. We have already seen that the exponential series converges uniformly on compact sets. Now suppose S and T are commuting linear operators on \mathbf{K}^n . Since S and T commute, the binomial theorem applies to $(S+T)^m$ and we have

$$\sum_{i+j=m} \frac{S^i}{i!} \frac{T^j}{j!} = \frac{(S+T)^m}{m!}.$$

It follows that (check this!)

$$\|e^{T+S} - S_k(S)S_k(T)\|_{\circ} \le 2\sum_{m=k+1}^{\infty} \frac{(\|S\|_{\circ} + \|T\|_{\circ})^m}{m!}$$

and the sum on the right can be made as small as we wish by choosing k large. It follows that $S_k(S)S_k(T) \to e^{T+S}$ as $k \to \infty$. By 8 in §1 of Lecture 7 of ANA2 we are done.

Example 1.1.3. Let $T \in L(\mathbf{R}^n)$. Then $\{e^{tT}\}$ is a one-parameter group of linear transformations. We already know that $e^{(t+s)T} = e^{tT}e^{sT}$ for all $s, t \in \mathbf{R}$. We thus only have to check that the map

$$g \colon \mathbf{R} \times \mathbf{R}^n \to \mathbf{R}^n, \quad (t, \boldsymbol{x}) \mapsto e^{tT} \boldsymbol{x}$$

is a \mathscr{C}^r . It is in fact \mathscr{C}^{∞} since it is given by a convergent power series which converges uniformly when t varies in a compact set. Moreover,

$$\frac{de^{tT}}{dt}\Big|_{\substack{t=0\\2}} = T.$$

Indeed

$$\frac{de^{tT}}{dt}\Big|_{t=0} - T = \lim_{h \to 0} \frac{1}{h} (e^{hT} - I_n) - T$$
$$= \lim_{h \to 0} \frac{1}{h} \Big(\sum_{m=0}^{\infty} \frac{h^m T^m}{m!} - I_n\Big) - T$$
$$= \lim_{h \to 0} \sum_{m=2}^{\infty} \frac{h^{m-1} T^m}{m!}$$

Since we wish to take a limit as $h \to 0$, we may assume $|h| \le 1$, whence $|h^{m-1}| \le |h|$ for $m \ge 2$. Hence

$$\left\| \frac{de^{tT}}{dt} \right|_{t=0} - T \right\|_{\circ} \le \lim_{h \to 0} |h| \sum_{m=2}^{\infty} \frac{\|T\|_{\circ}^m}{m!} \le \lim_{h \to 0} |h| e^{\|T\|_{\circ}} = 0.$$

Thus the phase velocity vector of $\{e^{tT}\}$ at \boldsymbol{x} is $\boldsymbol{v}(\boldsymbol{x}) = T\boldsymbol{x}$.

Theorem 1.1.4. Let $A \in M_n(\mathbf{R})$, $\mathbf{a} \in \mathbb{R}^n$ and $\varphi \colon \mathbf{R} \to \mathbf{R}^n$ the map given by $\varphi(t) = e^{tA}\mathbf{a}$. $g^t = e^{tA}$ for $t \in \mathbf{R}$. Then φ is the unique solution to the IVP $\dot{\mathbf{x}} = A\mathbf{x}, \mathbf{x}(0) = \mathbf{a}$.

Proof. $\{e^{tA}\}$ is a one-parameter groups of linear transformations on \mathbb{R}^n with phase velocity given by v(x) = Ax (see Example 1.1.3 above). By Theorem 1.3.2 of Lecture 9 we are done.

Corollary 1.1.5. All one-parameter groups of linear transformations on \mathbb{R}^n are of the form $\{e^{tA}\}, A \in L(\mathbb{R}^n)$.

Proof. Let $\{g^t\}$ be a one-parameter group of linear transformations. From §§ 1.4 of Lecture 9 the phase velocity vector of $\{g^t\}$ at \boldsymbol{x} is $A\boldsymbol{x}$ where $A = \frac{\mathrm{d}g^t}{\mathrm{d}t}|_{t=0}$. It follows from Theorem 1.3.2 of Lecture 9 that the map $\boldsymbol{\psi} \colon \mathbf{R} \to \mathbf{R}^n$ given by $\boldsymbol{\psi}(t) = g^t \boldsymbol{a}$ is the unique solution to the IVP $\dot{\boldsymbol{x}} = A\boldsymbol{x}, \, \boldsymbol{x}(0) = \boldsymbol{a}$. On the other hand, from Theorem 1.1.4 so is $\boldsymbol{\varphi} \colon \mathbf{R} \to \mathbf{R}^n$ given by $\boldsymbol{\varphi}(t) = e^{tA}\boldsymbol{a}$. It follows that $\boldsymbol{\psi} = \boldsymbol{\varphi}$, whence $g^t = e^{tA}, t \in \mathbf{R}$.

References

- [A1] V. I. Arnold, Ordinary Differential Equations, translated by Richard A. Silverman, MIT Press (also Prentice-Hall, India), Cambridge, MA, U.S.A., 1973.
- [A2] V. I. Arnold, Ordinary Differential Equations, translated by Roger Cooke, Universitext, Springer-Verlag, Berlin, 2006.