
LECTURE 10

Date of Lecture: February 3, 2019

As always, K ∈ {R, C}.
The symbol � is for flagging a cautionary comment or a tricky argument. It

occurs in the margins and is Knuth’s version of Bourbaki’s “dangerous bend sym-
bol”.

An n-tuple (x1, . . . , xn) of symbols (xi not necessarily real or complex numbers)
will also be written as a column vector when convenient. Thus

(x1, . . . , xn) =

x1...
xn

 .
A map f from a set S to a product set T1 × · · · × Tn will often be written as

an n-tuple f = (f1, . . . , fn), with fi a map from S to Ti, and hence, by the above
convention, as a column vector

f =

f1...
fn

 .
(See Remark 2.2.2 of Lecture 5 of ANA2.)

The default norm on Euclidean spaces of the form Rn is the Euclidean norm ‖ ‖2
and we will simply denote it as ‖ ‖. The space of K-linear transformations from
Kn to Km will be denoted HomR(Kn,Km) and will be identified in the standard
way with the space of m × n matrices Mm,n(K) and the operator norm1 on both
spaces will be denoted ‖ ‖◦. If m = n, we write Mn(R) for Mm,n(R), and L(Kn)
for HomK(Kn, Kn).

Note that (x1, . . . , xn) 6= [x1 . . . xn]. Each side is the transpose of the other.�

1. The Exponential Map

1.1. Fix n ∈ N. For R > 0, let BR = {T ∈ L(Kn) | ‖T‖◦ ≤ R}. Let T ∈ BR. Let

Sk(T ) =

k∑
i=0

Tm

m!
.

1See §§2.1 of Lecture 5 of ANA2.
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For 0 < l ≤ k we have

(†)

‖Sk(T )− Sl(T )‖◦ =
∥∥∥ n∑
m=l+1

Tm

m!

∥∥∥
◦

≤
n∑

m=l+1

∥∥∥Tm

m!

∥∥∥
◦

≤
n∑

m=l+1

Rm

m!

Given ε > 0, we can find N such that for N ≤ l ≤ k,
∑n

m=l+1
Rm

m! < ε. Since N
does not depend upon T , it follows from (†) that {Sm} is unformly Cauchy on BR.
Since L(Kn) is complete (being a finite dimensional K-vector space), this means
{Sm(T )} converges and the convergence is uniform on BR. Another way of saying

this is that the the series
∑∞

m=0
Tm

m! converges uniformly on compact subsets of
L(Kn). This allows to make the following definition.

Definition 1.1.1. For T ∈ L(Kn) the exponential eT of T is the element of L(Kn)
given by the formula

eT =

∞∑
m=0

Tm

m!
.

Theorem 1.1.2. The exponential series
∑∞

m=0 T
m/m! converges uniformly on

compact subsets of L(Kn). Moreover, if S and T are elements of L(Kn) such
that ST = TS then

eT+S = eT eS .

Proof. We have already seen that the exponential series converges uniformly on
compact sets. Now suppose S and T are commuting linear operators on Kn. Since
S and T commute, the binomial theorem applies to (S + T )m and we have∑

i+j=m

Si

i!

T j

j!
=

(S + T )m

m!
.

It follows that (check this!)

‖eT+S − Sk(S)Sk(T )‖◦ ≤ 2

∞∑
m=k+1

(‖S‖◦ + ‖T‖◦)m

m!

and the sum on the right can be made as small as we wish by choosing k large. It
follows that Sk(S)Sk(T )→ eT+S as k →∞. By 8 in § 1 of Lecture 7 of ANA2 we
are done. �

Example 1.1.3. Let T ∈ L(Rn). Then {etT } is a one-parameter group of linear
transformations. We already know that e(t+s)T = etT esT for all s, t ∈ R. We thus
only have to check that the map

g : R×Rn → Rn, (t,x) 7→ etTx

is a C r. It is in fact C∞ since it is given by a convergent power series which
converges uniformly when t varies in a compact set. Moreover,

detT

dt

∣∣∣
t=0

= T.
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Indeed

detT

dt

∣∣∣
t=0
− T = lim

h→0

1

h
(ehT − In)− T

= lim
h→0

1

h

( ∞∑
m=0

hmTm

m!
− In

)
− T

= lim
h→0

∞∑
m=2

hm−1Tm

m!

Since we wish to take a limit as h→ 0, we may assume |h| ≤ 1, whence |hm−1| ≤ |h|
for m ≥ 2. Hence∥∥∥∥∥detTdt ∣∣∣t=0

− T

∥∥∥∥∥
◦

≤ lim
h→0
|h|

∞∑
m=2

‖T‖m◦
m!

≤ lim
h→0
|h|e‖T‖◦ = 0.

Thus the phase velocity vector of {etT } at x is v(x) = Tx.

Theorem 1.1.4. Let A ∈ Mn(R), a ∈ Rn and ϕ : R → Rn the map given by
ϕ(t) = etAa. gt = etA for t ∈ R. Then ϕ is the unique solution to the IVP
.
x = Ax, x(0) = a.

Proof. {etA} is a one-parameter groups of linear transformations on Rn with phase
velocity given by v(x) = Ax (see Example 1.1.3 above). By Theorem 1.3.2 of
Lecture 9 we are done. �

Corollary 1.1.5. All one-parameter groups of linear transformations on Rn are
of the form {etA}, A ∈ L(Rn).

Proof. Let {gt} be a one-parameter group of linear transformations. From §§ 1.4 of

Lecture 9 the phase velocity vector of {gt} at x is Ax where A = dgt

dt |t=0. It follows
from Theorem 1.3.2 of Lecture 9 that the map ψ : R → Rn given by ψ(t) = gta
is the unique solution to the IVP

.
x = Ax, x(0) = a. On the other hand, from

Theorem 1.1.4 so is ϕ : R → Rn given by ϕ(t) = etAa. It follows that ψ = ϕ,
whence gt = etA, t ∈ R. �

References

[A1] V. I. Arnold, Ordinary Differential Equations, translated by Richard A. Silverman, MIT
Press (also Prentice-Hall, India), Cambridge,MA, U.S.A., 1973.

[A2] V. I. Arnold, Ordinary Differential Equations, translated by Roger Cooke, Universitext,

Springer-Verlag, Berlin, 2006.

3

https://www.cmi.ac.in/~pramath/DEQN21/Lectures/Lecture9.pdf
https://www.cmi.ac.in/~pramath/DEQN21/Lectures/Lecture9.pdf
https://www.cmi.ac.in/~pramath/DEQN21/Lectures/Lecture9.pdf
https://www.cmi.ac.in/~pramath/DEQN21/Lectures/Lecture9.pdf
https://www.cmi.ac.in/~pramath/DEQN21/Lectures/Lecture9.pdf

	1. The Exponential Map
	1.1. 

	References

