LECTURE 10

Date of Lecture: February 3, 2019

As always, $\mathbf{K} \in\{\mathbf{R}, \mathbf{C}\}$.
The symbol is for flagging a cautionary comment or a tricky argument. It occurs in the margins and is Knuth's version of Bourbaki's "dangerous bend symbol".

An n-tuple $\left(x_{1}, \ldots, x_{n}\right)$ of symbols (x_{i} not necessarily real or complex numbers) will also be written as a column vector when convenient. Thus

$$
\left(x_{1}, \ldots, x_{n}\right)=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

A map \boldsymbol{f} from a set S to a product set $T_{1} \times \cdots \times T_{n}$ will often be written as an n-tuple $\boldsymbol{f}=\left(f_{1}, \ldots, f_{n}\right)$, with f_{i} a map from S to T_{i}, and hence, by the above convention, as a column vector

$$
\boldsymbol{f}=\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right] .
$$

(See Remark 2.2.2 of Lecture 5 of ANA2.)
The default norm on Euclidean spaces of the form \mathbf{R}^{n} is the Euclidean norm $\left\|\|_{2}\right.$ and we will simply denote it as $\|\|$. The space of \mathbf{K}-linear transformations from \mathbf{K}^{n} to \mathbf{K}^{m} will be denoted $\operatorname{Hom}_{\mathbf{R}}\left(\mathbf{K}^{n}, \mathbf{K}^{m}\right)$ and will be identified in the standard way with the space of $m \times n$ matrices $M_{m, n}(\mathbf{K})$ and the operator norm ${ }^{1}$ on both spaces will be denoted $\left\|\|_{0}\right.$. If $m=n$, we write $M_{n}(\mathbf{R})$ for $M_{m, n}(\mathbf{R})$, and $L\left(\mathbf{K}^{n}\right)$ for $\operatorname{Hom}_{\mathbf{K}}\left(\mathbf{K}^{n}, \mathbf{K}^{n}\right)$.

Note that $\left(x_{1}, \ldots, x_{n}\right) \neq\left[x_{1} \ldots x_{n}\right]$. Each side is the transpose of the other.

1. The Exponential Map

1.1. Fix $n \in \mathbf{N}$. For $R>0$, let $B_{R}=\left\{T \in L\left(\mathbf{K}^{n}\right) \mid\|T\|_{\circ} \leq R\right\}$. Let $T \in B_{R}$. Let

$$
S_{k}(T)=\sum_{i=0}^{k} \frac{T^{m}}{m!}
$$

[^0]For $0<l \leq k$ we have

$$
\begin{align*}
\left\|S_{k}(T)-S_{l}(T)\right\|_{\circ} & =\left\|\sum_{m=l+1}^{n} \frac{T^{m}}{m!}\right\|_{\circ} \\
& \leq \sum_{m=l+1}^{n}\left\|\frac{T^{m}}{m!}\right\|_{\circ} \\
& \leq \sum_{m=l+1}^{n} \frac{R^{m}}{m!}
\end{align*}
$$

Given $\epsilon>0$, we can find N such that for $N \leq l \leq k, \sum_{m=l+1}^{n} \frac{R^{m}}{m!}<\epsilon$. Since N does not depend upon T, it follows from (\dagger) that $\left\{S_{m}\right\}$ is unformly Cauchy on B_{R}. Since $L\left(\mathbf{K}^{n}\right)$ is complete (being a finite dimensional \mathbf{K}-vector space), this means $\left\{S_{m}(T)\right\}$ converges and the convergence is uniform on B_{R}. Another way of saying this is that the the series $\sum_{m=0}^{\infty} \frac{T^{m}}{m!}$ converges uniformly on compact subsets of $L\left(\mathbf{K}^{n}\right)$. This allows to make the following definition.
Definition 1.1.1. For $T \in L\left(\mathbf{K}^{n}\right)$ the exponential e^{T} of T is the element of $L\left(\mathbf{K}^{n}\right)$ given by the formula

$$
e^{T}=\sum_{m=0}^{\infty} \frac{T^{m}}{m!}
$$

Theorem 1.1.2. The exponential series $\sum_{m=0}^{\infty} T^{m} / m$! converges uniformly on compact subsets of $L\left(\mathbf{K}^{n}\right)$. Moreover, if S and T are elements of $L\left(\mathbf{K}^{n}\right)$ such that $S T=T S$ then

$$
e^{T+S}=e^{T} e^{S}
$$

Proof. We have already seen that the exponential series converges uniformly on compact sets. Now suppose S and T are commuting linear operators on \mathbf{K}^{n}. Since S and T commute, the binomial theorem applies to $(S+T)^{m}$ and we have

$$
\sum_{i+j=m} \frac{S^{i}}{i!} \frac{T^{j}}{j!}=\frac{(S+T)^{m}}{m!}
$$

It follows that (check this!)

$$
\left\|e^{T+S}-S_{k}(S) S_{k}(T)\right\|_{\circ} \leq 2 \sum_{m=k+1}^{\infty} \frac{\left(\|S\|_{\circ}+\|T\|_{\circ}\right)^{m}}{m!}
$$

and the sum on the right can be made as small as we wish by choosing k large. It follows that $S_{k}(S) S_{k}(T) \rightarrow e^{T+S}$ as $k \rightarrow \infty$. By 8 in $\S 1$ of Lecture 7 of ANA2 we are done.

Example 1.1.3. Let $T \in L\left(\mathbf{R}^{n}\right)$. Then $\left\{e^{t T}\right\}$ is a one-parameter group of linear transformations. We already know that $e^{(t+s) T}=e^{t T} e^{s T}$ for all $s, t \in \mathbf{R}$. We thus only have to check that the map

$$
g: \mathbf{R} \times \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}, \quad(t, \boldsymbol{x}) \mapsto e^{t T} \boldsymbol{x}
$$

is a \mathscr{C}^{r}. It is in fact \mathscr{C}^{∞} since it is given by a convergent power series which converges uniformly when t varies in a compact set. Moreover,

$$
\left.\frac{d e^{t T}}{d t}\right|_{\substack{t=0 \\ 2}}=T
$$

Indeed

$$
\begin{aligned}
\left.\frac{d e^{t T}}{d t}\right|_{t=0}-T & =\lim _{h \rightarrow 0} \frac{1}{h}\left(e^{h T}-I_{n}\right)-T \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\sum_{m=0}^{\infty} \frac{h^{m} T^{m}}{m!}-I_{n}\right)-T \\
& =\lim _{h \rightarrow 0} \sum_{m=2}^{\infty} \frac{h^{m-1} T^{m}}{m!}
\end{aligned}
$$

Since we wish to take a limit as $h \rightarrow 0$, we may assume $|h| \leq 1$, whence $\left|h^{m-1}\right| \leq|h|$ for $m \geq 2$. Hence

$$
\left\|\left.\frac{d e^{t T}}{d t}\right|_{t=0}-T\right\|_{0} \leq \lim _{h \rightarrow 0}|h| \sum_{m=2}^{\infty} \frac{\|T\|_{\circ}^{m}}{m!} \leq \lim _{h \rightarrow 0}|h| e^{\|T\|_{\circ}}=0
$$

Thus the phase velocity vector of $\left\{e^{t T}\right\}$ at \boldsymbol{x} is $\boldsymbol{v}(\boldsymbol{x})=T \boldsymbol{x}$.
Theorem 1.1.4. Let $A \in M_{n}(\mathbf{R}), \boldsymbol{a} \in R^{n}$ and $\boldsymbol{\varphi}: \mathbf{R} \rightarrow \mathbf{R}^{n}$ the map given by $\boldsymbol{\varphi}(t)=e^{t A} \boldsymbol{a} . g^{t}=e^{t A}$ for $t \in \mathbf{R}$. Then $\boldsymbol{\varphi}$ is the unique solution to the IVP $\dot{\boldsymbol{x}}=A \boldsymbol{x}, \boldsymbol{x}(0)=\boldsymbol{a}$.
Proof. $\left\{e^{t A}\right\}$ is a one-parameter groups of linear transformations on \mathbf{R}^{n} with phase velocity given by $\boldsymbol{v}(\boldsymbol{x})=A \boldsymbol{x}$ (see Example 1.1.3 above). By Theorem 1.3.2 of Lecture 9 we are done.

Corollary 1.1.5. All one-parameter groups of linear transformations on \mathbf{R}^{n} are of the form $\left\{e^{t A}\right\}, A \in L\left(\mathbf{R}^{n}\right)$.
Proof. Let $\left\{g^{t}\right\}$ be a one-parameter group of linear transformations. From $\S \S 1.4$ of Lecture 9 the phase velocity vector of $\left\{g^{t}\right\}$ at \boldsymbol{x} is $A \boldsymbol{x}$ where $A=\left.\frac{\mathrm{d} g^{t}}{\mathrm{~d} t}\right|_{t=0}$. It follows from Theorem 1.3.2 of Lecture 9 that the map $\boldsymbol{\psi}: \mathbf{R} \rightarrow \mathbf{R}^{n}$ given by $\boldsymbol{\psi}(t)=g^{t} \boldsymbol{a}$ is the unique solution to the IVP $\dot{\boldsymbol{x}}=A \boldsymbol{x}, \boldsymbol{x}(0)=\boldsymbol{a}$. On the other hand, from Theorem 1.1.4 so is $\boldsymbol{\varphi}: \mathbf{R} \rightarrow \mathbf{R}^{n}$ given by $\boldsymbol{\varphi}(t)=e^{t A} \boldsymbol{a}$. It follows that $\boldsymbol{\psi}=\boldsymbol{\varphi}$, whence $g^{t}=e^{t A}, t \in \mathbf{R}$.

References

[A1] V. I. Arnold, Ordinary Differential Equations, translated by Richard A. Silverman, MIT Press (also Prentice-Hall, India), Cambridge,MA, U.S.A., 1973.
[A2] V. I. Arnold, Ordinary Differential Equations, translated by Roger Cooke, Universitext, Springer-Verlag, Berlin, 2006.

[^0]: ${ }^{1}$ See $\S \S 2.1$ of Lecture 5 of ANA2.

